
- •Основные понятия и определения. Лекция №1. Микропроцессоры и микроконтроллеры. Общие сведения. Шина адреса, шина управления.
- •Что такое микропроцессор?
- •Шинная структура связей
- •Лекция №2. Архитектура микропроцессоров и микроконтроллеров. Risc и cisc система команд в мп и мк. Архитектура микропроцессорных систем
- •Типы микропроцессорных систем
- •Risc и cisc система команд в мп и мк
- •Команды пересылки данных
- •Арифметические команды
- •Логические команды
- •Команды переходов
- •Лекция №3. Внутренняя организация процессора. Назначение и функциональные особенности блоков. Быстродействие процессора
- •Классификация и структура
- •Процессорное ядро
- •Функции процессора
- •Лекция №4. Последовательность выполнения команд микропроцессором. Режимы адресации.
- •Адресация операндов
- •Методы адресации
- •Адресация байтов и слов
- •Регистры процессора
- •Система команд мп. Лекция №5. Архитектура изучаемого микроконтроллера. Назначение внутренних блоков. Микроконтроллеры семейства avr
- •Микроконтроллер aTtiny2313 фирмы Atmel
- •Архитектура микроконтроллеров семейства Tiny
- •Организация памяти
- •Память программ
- •Память данных
- •Способы адресации памяти данных
- •Прямая адресация
- •Лекция №6. Блок регистров общего назначения. Команды с непосредственной адресацией. Различные режимы адресации. Энергонезависимая память данных (eeprom)
- •Доступ к eeprom
- •Меры предосторожности
- •Счетчик команд и выполнение программы
- •Лекция №7. Система команд изучаемого микроконтроллера.
- •Лекция №8. Команды переходов и сдвига. Остальные команды.
- •Выводы микроконтроллера. Лекция №9. Описание выводов микроконтроллера.
- •Описание выводов
- •Кварцевый генератор
- •Лекция №10. Пространство ввода/вывода микроконтроллера.
- •Порт ввода/вывода в
- •Регистр направления данных порта b - ddrb
- •Альтернативные функции portb
- •Порт ввода/вывода d
- •Регистр направления данных порта b - ddrb
- •Порт d, как порт ввода/вывода общего назначения
- •Альтернативные функции порта d
- •Регистры и обработка прерываний микроконтроллера. Лекция №13. Регистр состояния и указатель стека микроконтроллера.
- •Регистр состояния - sreg
- •Указатель стека sp
- •Лекция №14. Обработка внешних прерываний в микроконтроллере.
- •Обработка внешних прерываний. Общий регистр маски прерываний gimsk
- •Общий регистр флагов прерываний
- •Регистр управления микроконтроллером - mcucr
- •Лекция №15. Обработка прерываний от таймеров/счетчиков в микроконтроллере.
- •Регистр маски прерывания от таймера/счетчика - timsk
- •Регистр флагов прерываний от таймеров/счетчиков - tifr
- •Прерывания в микроконтроллере. Лекция №16. Определитель таймеров/счетчиков. Принцип работы таймера/счетчика 0.
- •Определитель таймеров/счетчиков
- •Регистр управления таймером/счетчиком 0 - tccr0
- •Лекция №17. Режимы работы таймера/счетчика 1.
- •Регистр a управления таймером/счетчиком 1 - tccr1a
- •Таймер/счетчик 1 - tcnt1h и tcnt1l
- •Регистр совпадения a таймера/счетчика 1 - ocr1ah и ocr1al
- •Регистр захвата таймера/счетчика 1 - icr1h и icr1l
- •Таймер/счетчик в режиме шим
- •Лекция №18. Универсальный асинхронный приемо-передатчик. Принцип работы и управления.
- •Передача данных
- •Прием данных
- •Управление uart регистр ввода/вывода uart
- •Регистр состояния uart (usr)
- •Регистр управления uart (ucr)
- •Генератор скорости передачи
- •Лекция №19. Аналоговый компаратор и сторожевой таймер микроконтроллера.
- •Аналоговый компаратор регистр управления и состояния аналогового компаратора (acsr).
- •Регистр управления сторожевым таймером - wdtcr
- •Форматы представления чисел в эвм. Лекция №20. Формат чисел с фиксированной точкой и элементарные операции над ними.
- •Компьютерное представление целых чисел
- •Лекция №21. Формат чисел с плавающей точкой и элементарные операции над ними.
- •Компьютерное представление вещественных чисел
- •Цифро-аналоговые преобразователи. Лекция №22. Основные понятия и определения цифро-аналоговых преобразователей (цап). Виды погрешностей преобразования.
- •Параметры цап
- •Лекция №23. Цап на взвешивающей матрице и на матрице r-2r. Принцип работы. Достоинства и недостатки. Цап на взвешивающей матрице
- •Цап на матрице r-2r
Система команд мп. Лекция №5. Архитектура изучаемого микроконтроллера. Назначение внутренних блоков. Микроконтроллеры семейства avr
Это новое семейство 8-разрядных RISK микроконтроллеров фирмы ATMEL, изготовленных по малопотребляющей технологии и обладающих следующими характеристиками:
Гарвардская RISK архитектура загрузки и выполнение большинства команд в течение одного такта тактового генератора. При этом достигается скорость работы ~1MIPS/МГц;
Программы содержатся в электрически перепрограммируемой постоянной памяти программ Flash (кол-во циклов стирания/записи не менее 1000); кроме того, имеется возможность внутрисхемного программирования, что значительно ускоряет процесс разработки прибора;
Память данных на основе статического ОЗУ (SRAM);
Память констант на основе ЭСППЗУ (EEPROM) с кол-вом циклом перезаписи до 100 000 раз;
АЛУ, выполняющее вычисления непосредственно подключено к 32-м рабочим регистрам (РОНам), объединенным в регистровый файл;
небольшое потребление энергии и наличие нескольких режимов работы с пониженным потреблением энергии (удобен в приборах с батарейками);
различные способы синхронизации:
а.) встроенный RC-генератор;
б.) внешний сигнал синхронизации (с генератора);
в.) внешний резонатор (пьезокерамический или кварцевый).
возможность защиты от считывания;
встроенные широтно-импульсные модуляторы (ШИМ), аналоговые компараторы, таймеры/счетчики, последовательный UART и т.д.
Рис. 5.1. Архитектура ядра микроконтроллеров AVR
Имеются 2 подсемейства микроконтроллеров AVR:
Tiny AVR - недорогие миниатюрные МК в недорогом исполнении с производительностью до 10 MIPS, Flah памятью программ, 2..8кбайт, памятью данных SRAM 128..512б., памятью констант EEPROM 64..512 байт.
Mega AVR - с производительностью до 4..16 MIPS для сложных приложений, требующих большого объема памяти, Flah - до 128кбайт, EEPROM- 64..512 байт, SRAM - 2..4кбайт, встроенным АЦП(10разрядов 8каналов) и аппаратным умножителем 8х8.
Рассмотрим для примера МК семейства Classic фирмы Atmel ATtiny2313. Он имеет следующие характеристики:
2 кбайта Flash;
128 байт EEPROM;
15 линий ввода/вывода общего назначения;
32 регистра общего назначения;
2 таймера/счетчика (на 8 и 16 разрядов);
внешние и внутренние прерывания;
встроенный универсальный асинхронный приемопередатчик UART;
программируемый сторожевой таймер со встроенным генератором;
последовательный порт SPI для загрузки программ;
2 режима низкого энергопотребления, выбираемых программно.
Микроконтроллер aTtiny2313 фирмы Atmel
ATtiny2313 - экономичный 8 битовый микроконтроллер, построенный с использованием расширенной RISC архитектуры AVR. Исполняя по одной команде за период тактовой частоты, AT90S2313 имеет производительность около 1MIPS на МГц, что позволяет разработчикам создавать системы оптимальные по скорости и потребляемой мощности.
В основе ядра AVR лежит расширенная RISC архитектура, объединяющая развитый набор команд и 32 регистра общего назначения. Все 32 регистра непосредственно подключены к арифметико-логическому устройству (АЛУ), что дает доступ к любым двум регистрам за один машинный цикл.
Подобная архитектура обеспечивает десятикратный выигрыш в эффективности кода по сравнению с традиционными CISC микроконтроллерами. ATtiny2313 предлагает следующие возможности: 2кБ загружаемой флэш памяти; 128 байт EEPROM; 15 линий ввода/вывода общего назначения; 32 рабочих регистра; настраиваемые таймеры/счетчики с режимом совпадения; внешние и внутренние прерывания; программируемый универсальный последовательный порт; программируемый сторожевой таймер со встроенным генератором; SPI последовательный порт для загрузки программ; два выбираемых программно режима низкого энергопотребления. Холостой режим (Idle Mode) отключает ЦПУ, оставляя в рабочем состоянии регистры, таймеры/счетчики, SPI порт и систему прерываний. Экономичный режим (Power Down Mode) сохраняет содержимое регистров, но отключает генератор, запрещая функционирование всех встроенных устройств до внешнего прерывания или аппаратного сброса.
Микросхемы производятся с использованием технологии энергонезависимой памяти высокой плотности фирмы Atmel. Загружаемая флэш память на кристалле может быть перепрограммирована прямо в системе через последовательный интерфейс SPI или доступным программатором энергонезависимой памяти. Объединяя на одном кристалле усовершенствованный 8-битовый RISC процессор с загружаемой флэш памятью, ATtiny2313 является мощным микроконтроллером, который позволяет создавать достаточно гибкие и эффективные по стоимости устройства.
ATtiny2313 поддерживается полной системой разработки включающей в себя макроассемблер, программный отладчик/симулятор, внутрисхемный эмулятор и отладочный комплект.
Арифметико-Логическое Устройство. АЛУ процессора непосредственно подключено к 32 регистрам общего назначения. За один машинный цикл АЛУ производит операции между регистрами регистрового файла. Команды АЛУ разделены на три основных категории - арифметические, логические и битовые.
Загружаемая память программ. ATtiny2313 содержит 2кБ загружаемой флэш памяти для хранения программ. Поскольку все команды занимают одно 16- или 32-разрядное слово, флэш память организована как 1Kx16. Флэш-память выдерживает не менее 1000 циклов перезаписи. Программный счетчик имеет ширину 10 бит и позволяет адресоваться к 1024 словам программной флэш-памяти.
EEPROM память данных. ATtiny2313 содержит 128 байт электрически стираемой энергонезависимой памяти (EEPROM). EEPROM организована как отдельная область данных, каждый байт которой может быть прочитан и перезаписан. EEPROM выдерживает не менее 100000 циклов записи/стирания.
Время выполнения команд. ЦПУ процессора AVR управляется системной частотой генерируемой внешним резонатором. Внутреннее деление частоты генератора не используется. В процессоре организован буфер (pipeline) команд, при выборе команды из памяти программ происходит выполнение предыдущей команды. Подобная концепция позволяет достичь быстродействия 1MIPS на MHz, уникальных показателей стоимости, быстродействия и потребления процессора.