
- •Основные понятия и определения. Лекция №1. Микропроцессоры и микроконтроллеры. Общие сведения. Шина адреса, шина управления.
- •Что такое микропроцессор?
- •Шинная структура связей
- •Лекция №2. Архитектура микропроцессоров и микроконтроллеров. Risc и cisc система команд в мп и мк. Архитектура микропроцессорных систем
- •Типы микропроцессорных систем
- •Risc и cisc система команд в мп и мк
- •Команды пересылки данных
- •Арифметические команды
- •Логические команды
- •Команды переходов
- •Лекция №3. Внутренняя организация процессора. Назначение и функциональные особенности блоков. Быстродействие процессора
- •Классификация и структура
- •Процессорное ядро
- •Функции процессора
- •Лекция №4. Последовательность выполнения команд микропроцессором. Режимы адресации.
- •Адресация операндов
- •Методы адресации
- •Адресация байтов и слов
- •Регистры процессора
- •Система команд мп. Лекция №5. Архитектура изучаемого микроконтроллера. Назначение внутренних блоков. Микроконтроллеры семейства avr
- •Микроконтроллер aTtiny2313 фирмы Atmel
- •Архитектура микроконтроллеров семейства Tiny
- •Организация памяти
- •Память программ
- •Память данных
- •Способы адресации памяти данных
- •Прямая адресация
- •Лекция №6. Блок регистров общего назначения. Команды с непосредственной адресацией. Различные режимы адресации. Энергонезависимая память данных (eeprom)
- •Доступ к eeprom
- •Меры предосторожности
- •Счетчик команд и выполнение программы
- •Лекция №7. Система команд изучаемого микроконтроллера.
- •Лекция №8. Команды переходов и сдвига. Остальные команды.
- •Выводы микроконтроллера. Лекция №9. Описание выводов микроконтроллера.
- •Описание выводов
- •Кварцевый генератор
- •Лекция №10. Пространство ввода/вывода микроконтроллера.
- •Порт ввода/вывода в
- •Регистр направления данных порта b - ddrb
- •Альтернативные функции portb
- •Порт ввода/вывода d
- •Регистр направления данных порта b - ddrb
- •Порт d, как порт ввода/вывода общего назначения
- •Альтернативные функции порта d
- •Регистры и обработка прерываний микроконтроллера. Лекция №13. Регистр состояния и указатель стека микроконтроллера.
- •Регистр состояния - sreg
- •Указатель стека sp
- •Лекция №14. Обработка внешних прерываний в микроконтроллере.
- •Обработка внешних прерываний. Общий регистр маски прерываний gimsk
- •Общий регистр флагов прерываний
- •Регистр управления микроконтроллером - mcucr
- •Лекция №15. Обработка прерываний от таймеров/счетчиков в микроконтроллере.
- •Регистр маски прерывания от таймера/счетчика - timsk
- •Регистр флагов прерываний от таймеров/счетчиков - tifr
- •Прерывания в микроконтроллере. Лекция №16. Определитель таймеров/счетчиков. Принцип работы таймера/счетчика 0.
- •Определитель таймеров/счетчиков
- •Регистр управления таймером/счетчиком 0 - tccr0
- •Лекция №17. Режимы работы таймера/счетчика 1.
- •Регистр a управления таймером/счетчиком 1 - tccr1a
- •Таймер/счетчик 1 - tcnt1h и tcnt1l
- •Регистр совпадения a таймера/счетчика 1 - ocr1ah и ocr1al
- •Регистр захвата таймера/счетчика 1 - icr1h и icr1l
- •Таймер/счетчик в режиме шим
- •Лекция №18. Универсальный асинхронный приемо-передатчик. Принцип работы и управления.
- •Передача данных
- •Прием данных
- •Управление uart регистр ввода/вывода uart
- •Регистр состояния uart (usr)
- •Регистр управления uart (ucr)
- •Генератор скорости передачи
- •Лекция №19. Аналоговый компаратор и сторожевой таймер микроконтроллера.
- •Аналоговый компаратор регистр управления и состояния аналогового компаратора (acsr).
- •Регистр управления сторожевым таймером - wdtcr
- •Форматы представления чисел в эвм. Лекция №20. Формат чисел с фиксированной точкой и элементарные операции над ними.
- •Компьютерное представление целых чисел
- •Лекция №21. Формат чисел с плавающей точкой и элементарные операции над ними.
- •Компьютерное представление вещественных чисел
- •Цифро-аналоговые преобразователи. Лекция №22. Основные понятия и определения цифро-аналоговых преобразователей (цап). Виды погрешностей преобразования.
- •Параметры цап
- •Лекция №23. Цап на взвешивающей матрице и на матрице r-2r. Принцип работы. Достоинства и недостатки. Цап на взвешивающей матрице
- •Цап на матрице r-2r
Адресация операндов
Основная функция любого процессора, ради которой он и создается, — это выполнение команд. Система команд, выполняемых процессором, представляет собой нечто подобное таблице истинности логических элементов или таблице режимов работы более сложных логических микросхем. То есть она определяет логику работы процессора и его реакцию на те или иные комбинации внешних событий.
Написание программ для микропроцессорной системы — важнейший и часто наиболее трудоемкий этап разработки такой системы. А для создания эффективных программ необходимо иметь хотя бы самое общее представление о системе команд используемого процессора. Самые компактные и быстрые программы и подпрограммы создаются на языке Ассемблер, использование которого без знания системы команд абсолютно невозможно, ведь язык Ассемблер представляет собой символьную запись цифровых кодов машинного языка, кодов команд процессора. Конечно, для разработки программного обеспечения существуют всевозможные программные средства. Пользоваться ими обычно можно и без знания системы команд процессора. Чаще всего применяются языки программирования высокого уровня, такие как Си. Однако знание системы команд и языка Ассемблер позволяет в несколько раз повысить эффективность некоторых наиболее важных частей программного обеспечения любой микропроцессорной системы — от микроконтроллера до персонального компьютера.
Именно поэтому мы рассматриваем основные типы команд, имеющиеся у большинства процессоров, и особенности их применения.
Каждая команда, выбираемая (читаемая) из памяти процессором, определяет алгоритм поведения процессора на ближайшие несколько тактов. Код команды говорит о том, какую операцию предстоит выполнить процессору и с какими операндами (то есть кодами данных), где взять исходную информацию для выполнения команды и куда поместить результат (если необходимо). Код команды может занимать от одного до нескольких байт, причем процессор узнает о том, сколько байт команды ему надо читать, из первого прочитанного им байта или слова. В процессоре код команды расшифровывается и преобразуется в набор микроопераций, выполняемых отдельными узлами процессора. Но разработчику микропроцессорных систем это знание не слишком важно, ему важен только результат выполнения той или иной команды.
Большая часть команд процессора работает с кодами данных (операндами). Одни команды требуют входных операндов (одного или двух), другие выдают выходные операнды (чаще один операнд). Входные операнды называются еще операндами-источниками, а выходные называются операндами-приемниками. Все эти коды операндов (входные и выходные) должны где-то располагаться. Они могут находиться во внутренних регистрах процессора (наиболее удобный и быстрый вариант). Они могут располагаться в системной памяти (самый распространенный вариант). Наконец, они могут находиться в устройствах ввода/вывода (наиболее редкий случай). Определение места положения операндов производится кодом команды. Причем существуют разные методы, с помощью которых код команды может определить, откуда брать входной операнд и куда помещать выходной операнд. Эти методы называются методами адресации. Эффективность выбранных методов адресации во многом определяет эффективность работы всего процессора в целом.