
- •Лекция 1. Введение в цифровую обработку сигналов Введение
- •1.1. Предисловие к цифровой обработке сигналов [1i].
- •1.2. Ключевые операции цифровой обработки.
- •1.3. Области применения цифровой обработки.
- •Литература
- •Лекция 2. Цифровые фильтры обработки одномерных сигналов. Введение
- •2.1. Цифровые фильтры.
- •2.1.6. Интегрирующий рекурсивный фильтр.
- •2.2. Импульсная реакция фильтров.
- •2.3. Передаточные функции фильтров.
- •2.4. Частотные характеристики фильтров.
- •2.5. Структурные схемы цифровых фильтров.
- •Литература
- •Лекция 3. Фильтры сглаживания. Метод наименьших квадратов. Введение
- •3.1. Фильтры мнк 1-го порядка.
- •3.3. Фильтры мнк 4-го порядка.
- •3.4. Расчет простого фильтра по частотной характеристике.
- •Литература
- •Лекция 4. Разностные фильтры и фильтры интегрирования. Введение
- •4.1. Разностные операторы.
- •4.2. Интегрирование данных.
- •Литература
- •Лекция 5. Фильтрация случайных сигналов Введение
- •5.1. Фильтрация случайных сигналов.
- •5.2. Спектры мощности случайных сигналов.
- •Литература
- •Лекция 6. Весовые функции. Введение
- •3.1. Явление Гиббса.
- •3.2. Весовые функции.
- •Литература
- •Лекция 7. Нерекурсивные частотные цифровые фильтры Введение
- •7.1. Общие сведения.
- •7.2. Идеальные частотные фильтры.
- •7.3. Конечные приближения идеальных фильтров.
- •7.4. Гладкие частотные фильтры.
- •7.5. Дифференцирующие цифровые фильтры.
- •7.6. Альтернативные методы расчета нцф.
- •Литература
- •Лекция 8. Z-преобразование сигналов и системных функций Введение
- •8.2. Пространство z-полиномов.
- •8.3. Свойства z-преобразования.
- •8.4. Обратное z-преобразование.
- •8.5. Применение z – преобразования.
- •Литература
- •Лекция 9. Рекурсивные цифровые фильтры Введение
- •9.1. Принципы рекурсивной фильтрации.
- •9.2. Разработка Рекурсивных цифровых фильтров [43].
- •9.3. Режекторные и селекторные фильтры.
- •9.4. Билинейное z-преобразование.
- •9.5. Типы рекурсивных частотных фильтров.
- •Литература
- •Лекция 10. Рекурсивные частотные цифровые фильтры Введение
- •10.1. Низкочастотный фильтр Баттеруорта.
- •10.2. Высокочастотный фильтр Баттеруорта.
- •10.3. Полосовой фильтр Баттеруорта.
- •10.4. Фильтры Чебышева.
- •10.5. Дополнительные сведения.
- •Литература
- •Тема 11. Адаптивная цифровая фильтрация данных Введение
- •11.1. Общие сведения об адаптивной цифровой фильтрации.
- •11.2. Основы статистической группировки информации.
- •11.3. Статистическая регуляризация данных.
- •11.3. Статистическая группировка полезной информации.
- •Литература
- •Лекция 12. Оптимальные линейные цифровые фильтры. Введение
- •12.1. Случайные процессы и шумы.
- •12.2. Критерии построения оптимальных фильтров.
- •12.3. Фильтр Колмогорова-Винера.
- •12.4. Оптимальные фильтры сжатия сигналов.
- •12.5. Фильтр обнаружения сигналов.
- •12.6. Энергетический фильтр.
- •Литература
- •Лекция 13. Деконволюция цифровых сигналов введение
- •13.1. Понятие деконволюции.
- •13.2. Инверсия импульсного отклика фильтра.
- •13.3. Оптимальные фильтры деконволюции.
- •13.4. Рекурсивная деконволюция.
- •13.5. Фильтры сжатия сигналов
- •Литература
8.3. Свойства z-преобразования.
Важнейшим свойством z-преобразования является свойство его единственности. Любая последовательность s(k) однозначно определяется z-изображением в области его сходимости, и наоборот, однозначно восстанавливается по z-изображению.
Без углубления в теорию, можно констатировать, что все свойства ДПФ действительны и для z-преобразования. Отметим некоторые из них.
Линейность: Если s(k) = a·x(k)+b·y(k), то S(z) = aX(z)+bY(z). Соответственно, z-преобразование допустимо только для анализа линейных систем и сигналов, удовлетворяющих принципу суперпозиции.
Задержка на n тактов: y(k) = x(k-n).
Y(z)
=
y(k)
zk
=
x(k-n)
zk
=zn
x(k-n)
zk-n
= zn
x(m)
zm
= zn
X(z).
Соответственно, умножение z-образа сигнала на множитель zn вызывает сдвиг сигнала на n тактов дискретизации.
Преобразование свертки. При выполнении нерекурсивной цифровой фильтрации односторонними операторами фильтров:
s(k) =
h(n)
y(k-n),
k
= 0, 1, 2, …
Z-преобразование уравнения свертки:
S(z) = h(n) y(k-n) zk = h(n) zn y(k-n) zk-n =
= h(n) zn y(k-n) zk-n = H(z) Y(z).
Таким образом, свертка дискретных функций отображается произведением z-образов этих функций. Аналогично, для z-преобразования могут быть доказаны все известные теоремы о свойствах z-образов, что вполне естественно, т.к. при z=exp(-j) эти свойства полностью эквивалентны свойствам спектров функций.
Разложение сигналов на блоки последовательной свертки. Z-преобразование позволяет производить разложение сигналов и функций, например передаточных функций фильтров, на короткие составляющие операции свертки, для чего достаточно приравнять z-полином к нулю, найти его корни ai, и переписать полином в виде произведения двучленов:
S(z) = a0(z-a1)(z-a2)...,
где а0- последний отсчет сигнала (коэффициент при старшей степени z).
Но произведению в z-области соответствует свертка в координатной области, и при обратном преобразовании двучлены (z-ai) превращаются в двухточечные диполи {-ai,1}, а сигнал длиной N представляется сверткой (N-1) диполей:
sk= a0{-a1,1}*{-a2,1}*{-a3,1}* ...
Пример. sk = {1.4464, -2.32, 3.37, -3, 1}. S(z) = z4-3z3+3.37z2-2.32z+1.4464. a0 = 1.
Корни полинома S(z): a1 = 0.8+0.8j, a2 = 0.8-0.8j, a3 = 0.7+0.8j, a4 = 0.7-0.8j,
S(z) = (z-0.8-0.8j)(z-0.8+0.8j)(z-0.7-0.8j)(z-0.7+0.8j).
Корни полинома представлены на z-плоскости на рис. 8.1.1. Корни полинома комплексные и четыре двучлена в координатной области также будут комплексными. Но они являются сопряженными, и для получения вещественных функций следует перемножить сопряженные двучлены и получить биквадратные блоки: S(z) = (z2-1.4z+1.13)(z2-1.6z+1.28).
При переходе в координатную область: sk = {1.13, -1.4, 1} * {1.28, -1.6, 1}.
Таким образом, исходный сигнал разложен на свертку двух трехчленных сигналов (функций).
Дифференцирование. Если имеем s(k) S(z), то z-образ функции ks(k) можно найти, продифференцировав S(z), что бывает полезно для вычисления обратного z-преобразования функций S(z) с полюсами высокого порядка:
ks(k) z dX(z)/dz.