
- •Лекция 1. Введение в цифровую обработку сигналов Введение
- •1.1. Предисловие к цифровой обработке сигналов [1i].
- •1.2. Ключевые операции цифровой обработки.
- •1.3. Области применения цифровой обработки.
- •Литература
- •Лекция 2. Цифровые фильтры обработки одномерных сигналов. Введение
- •2.1. Цифровые фильтры.
- •2.1.6. Интегрирующий рекурсивный фильтр.
- •2.2. Импульсная реакция фильтров.
- •2.3. Передаточные функции фильтров.
- •2.4. Частотные характеристики фильтров.
- •2.5. Структурные схемы цифровых фильтров.
- •Литература
- •Лекция 3. Фильтры сглаживания. Метод наименьших квадратов. Введение
- •3.1. Фильтры мнк 1-го порядка.
- •3.3. Фильтры мнк 4-го порядка.
- •3.4. Расчет простого фильтра по частотной характеристике.
- •Литература
- •Лекция 4. Разностные фильтры и фильтры интегрирования. Введение
- •4.1. Разностные операторы.
- •4.2. Интегрирование данных.
- •Литература
- •Лекция 5. Фильтрация случайных сигналов Введение
- •5.1. Фильтрация случайных сигналов.
- •5.2. Спектры мощности случайных сигналов.
- •Литература
- •Лекция 6. Весовые функции. Введение
- •3.1. Явление Гиббса.
- •3.2. Весовые функции.
- •Литература
- •Лекция 7. Нерекурсивные частотные цифровые фильтры Введение
- •7.1. Общие сведения.
- •7.2. Идеальные частотные фильтры.
- •7.3. Конечные приближения идеальных фильтров.
- •7.4. Гладкие частотные фильтры.
- •7.5. Дифференцирующие цифровые фильтры.
- •7.6. Альтернативные методы расчета нцф.
- •Литература
- •Лекция 8. Z-преобразование сигналов и системных функций Введение
- •8.2. Пространство z-полиномов.
- •8.3. Свойства z-преобразования.
- •8.4. Обратное z-преобразование.
- •8.5. Применение z – преобразования.
- •Литература
- •Лекция 9. Рекурсивные цифровые фильтры Введение
- •9.1. Принципы рекурсивной фильтрации.
- •9.2. Разработка Рекурсивных цифровых фильтров [43].
- •9.3. Режекторные и селекторные фильтры.
- •9.4. Билинейное z-преобразование.
- •9.5. Типы рекурсивных частотных фильтров.
- •Литература
- •Лекция 10. Рекурсивные частотные цифровые фильтры Введение
- •10.1. Низкочастотный фильтр Баттеруорта.
- •10.2. Высокочастотный фильтр Баттеруорта.
- •10.3. Полосовой фильтр Баттеруорта.
- •10.4. Фильтры Чебышева.
- •10.5. Дополнительные сведения.
- •Литература
- •Тема 11. Адаптивная цифровая фильтрация данных Введение
- •11.1. Общие сведения об адаптивной цифровой фильтрации.
- •11.2. Основы статистической группировки информации.
- •11.3. Статистическая регуляризация данных.
- •11.3. Статистическая группировка полезной информации.
- •Литература
- •Лекция 12. Оптимальные линейные цифровые фильтры. Введение
- •12.1. Случайные процессы и шумы.
- •12.2. Критерии построения оптимальных фильтров.
- •12.3. Фильтр Колмогорова-Винера.
- •12.4. Оптимальные фильтры сжатия сигналов.
- •12.5. Фильтр обнаружения сигналов.
- •12.6. Энергетический фильтр.
- •Литература
- •Лекция 13. Деконволюция цифровых сигналов введение
- •13.1. Понятие деконволюции.
- •13.2. Инверсия импульсного отклика фильтра.
- •13.3. Оптимальные фильтры деконволюции.
- •13.4. Рекурсивная деконволюция.
- •13.5. Фильтры сжатия сигналов
- •Литература
4.2. Интегрирование данных.
Интегрирование сигналов реализуется рекурсивными цифровыми фильтрами. Рассмотрим примеры анализа интегрирующих операторов.
Как известно, для точной операции интегрирования финитных сигналов в общем случае действительно преобразование:
s(t)
dt
(1/j)
S().
Это выражение в правой части имеет особую точку при = 0 и, соответственно, весовой дельта-импульс на нулевой частоте, пропорциональный постоянной составляющей сигнала. Оператор интегрирования в частотной области (1/j) при > 1 ослабляет в амплитудном спектре высокие частоты, а при 0 < <1 усиливает низкие. Фазовый спектр сигнала смещается на -900 для положительных частот и на 900 для отрицательных.
Наиболее простыми и распространенными на практике алгоритмами интегрирования являются цифровые аналоги формул трапеций, прямоугольников и Симпсона.
Алгоритм интегрирования по формуле трапеций при нулевых начальных условиях:
yk+1 = yk+(sk+1+sk)/2. (4.2.1)
Рис. 4.2.1. Частотные
характеристики фильтров
H() = cos(/2)/[2j sin(/2)].
Частотная характеристика фильтра, а также фильтров интегрирования по другим формулам, приведена на рис. 4.2.1. В связи с накоплением результатов по всему предыдущему циклу суммирования и большим диапазоном значений модуля АЧХ характеристики фильтра более удобными, представительными и информационными являются частотные функции коэффициентов соответствия фактического интегрирования истинному:
K() = H()exp(jt)/[(1/j)exp(jt)].
K() = cos(/2)[(/2)/sin(/2)]. (4.2.2)
Графики коэффициентов соответствия всех фильтров интегрирования приведены на рис. 4.2.2
Оператор интегрирования по формуле прямоугольников (интерполяционное среднеточечное):
yk+1 = yk+sk+1/2. (4.2.3)
После аналогичных подстановок сигнала и преобразований получаем:
K() = (/2)/sin(/2).
При численном интегрировании по формуле Симпсона уравнение фильтра имеет вид:
yk+1 = yk-1+(sk+1+4sk+sk-1)/6. (4.2.4)
Частотный анализ фильтра проведите самостоятельно. Контроль:
K() = (2+cos )/[3 sin()/].
Рис. 4.2.2. Коэффициенты
соответствия.
Формула Симпсона отличается от формул трапеций и прямоугольников более высокой степенью касания единичного значения, что обеспечивает более высокую точность интегрирования в первой половине главного диапазона. Однако на высоких частотах погрешность начинает резко нарастать вплоть до выхода на бесконечность на конце диапазона (полюс в знаменателе передаточной функции рекурсивного фильтра на частоте Найквиста).
Эти особенности интегрирования следует учитывать при обработке данных сложного спектрального состава. Пример интегрирования сигнала и изменения его спектра приведен на рис. 4.2.3.
Рис. 4.2.3.