
- •Автор-составитель:
- •1. Цели и задачи дисциплины
- •2. Требования к уровню освоения дисциплины
- •3. Объем дисциплины
- •3.1 Объем дисциплины и виды учебной работы
- •3.2 Распределение часов по темам и видам учебной работы
- •4. Содержание курса
- •Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
- •Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
- •Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
- •Тема 7. Нелинейные регрессионные модели и их линеаризация.
- •Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
- •5. Темы практических занятий
- •Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
- •Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
- •Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
- •Тема 7. Нелинейные регрессионные модели и их линеаризация.
- •Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
- •6. Задания для самостоятельной работы студентов
- •Задача 2.1.
- •Задача 2.2.
- •Задача 2.3.
- •Задача 2.4.
- •Задача 3.1.
- •Задача 3.2.
- •Задача 3.3.
- •Задача 4.2.
- •Задача 4.3.
- •Задача 4.4.
- •Задача 4.5.
- •Задача 4.6.
- •Задача 7.1.
- •Задача 7.2.
- •Задача 7.3.
- •Задача 7.4.
- •Задача 8.1.
- •Задача 8.2.
- •Задача 8.3.
- •Вариант 1.
- •Вариант 2.
- •Вариант 3.
- •Вариант 4.
- •Вариант 5.
- •Вариант 6.
- •Вариант 7.
- •Вариант 8.
- •Вариант 9.
- •Вариант 10.
- •Вариант 11.
- •Вариант 12.
- •Вариант 13.
- •Вариант 14.
- •Вариант 15.
- •Вариант 16.
- •Вариант 17.
- •Вариант 18.
- •Вариант 19.
- •Вариант 20.
- •Вариант 21.
- •Вариант 22.
- •Вариант 23.
- •Вариант 24.
- •Вариант 25.
- •6.3. Примерные темы рефератов
- •7. Варианты контрольных работ и методические указания по их выполнению
- •Регрессионные модели с одним уравнением
- •Системы одновременных уравнений
- •Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
- •Метод наименьших квадратов (мнк)
- •Геометрическая интерпретация
- •Матричная форма записи
- •Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
- •Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
- •Тема 7. Нелинейные регрессионные модели и их линеаризация.
- •Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
- •Варианты контрольных работ.
- •8. Вопросы для подготовки к зачету
- •9. Учебно-методическое обеспечение дисциплины
- •9.1 Литература
- •9.2 Методическое обеспечение дисциплины
- •9.3 Материально-техническое и информационное обеспечение дисциплин
- •10. Инновационные технологии, используемые в преподавании курса «экономико-математические методы и модели в таможенной статистике»
Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
Основные виды систем уравнений. Идентификация рекурсивных систем. Структурная и приведенная формы модели, выраженной системой одновременных уравнений. Проблема идентифицируемости модели. Необходимое и достаточное условия идентифицируемости уравнений системы. Статистическое оценивание неизвестных значений параметров. Двухшаговый метод наименьших квадратов (ДМНК) оценивания структурных параметров отдельного уравнения системы. Трехшаговый метод наименьших квадратов (ТМНК) одновременного оценивания всех параметров системы уравнений. Другие методы оценивания систем одновременных уравнений.
Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
Обобщенная линейная модель множественной регрессии (ОЛММР) и обобщенный метод наименьших квадратов (ОМНК). Обобщенная линейная модель множественной регрессии (ОЛММР) с гомоскедастичными и гетероскедастичными остатками, а также обобщенная линейная модель множественной регрессии с автокоррелированными остатками. Теорема Айткена. Фиктивные переменные. . Интерпретация коэффициентов при фиктивных переменных. Фиктивная ловушка. Построение регрессионных моделей по неоднородным данным. Тест Чоу. Использование фиктивных переменных при построении регрессионных моделях по неоднородным данным
Тема 7. Нелинейные регрессионные модели и их линеаризация.
Некоторые виды нелинейных зависимостей, поддающиеся непосредственной линеаризации. Модели, нелинейные по параметрам, и модели, нелинейные по переменным. Интерпретация параметров степенной модели. Производственные функции и их анализ (эластичность объема производства, эффект от масштаба производства). Экономическая интерпретация полученных моделей.
Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
Модели стационарных временных рядов и их идентификация. Коэффициент автокорреляции. Выборочная автокорреляционная функция. Коррелограмма. Частный коэффициент корреляции. Модели нестационарных временных рядов и их идентификация. Модели регрессии с распределенными лагами (с конечной и бесконечной величиной лага). Методы оценки параметров моделей с распределенными лагами. Краткосрочный мультипликатор. Долгосрочный мультипликатор. Средний лаг. Прогнозирование, основанное на использовании моделей временных рядов. Адаптивные модели прогнозирования.
5. Темы практических занятий
Тема 1. Понятие экономической модели. Роль моделей в экономической теории и принятии решений. Типы экономических моделей. Неполнота в экономических моделях. Основные этапы построения экономических моделей.
Виды моделей. Примеры моделей.
Основные этапы моделирования.
Проблемы моделирования.
Литература: 1, 2.
Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
Построение модели парной регрессии.
Метод наименьших квадратов и свойства МНК-оценок.
Интерпретация параметров линейной регрессионной модели.
Литература: 3, 4, 5, 7.
Тема 3. Классическая нормальная линейная модель множественной регрессии. Предпосылки регрессионного анализа. Адекватность, значимость и точность модели. Оценка значимости коэффициентов регрессии. Уравнение регрессии в стандартизованной форме. Пример построения линейной модели множественной регрессии. Экономическая интерпретация параметров модели.
Критерии адекватности регрессионной модели.
Определение адекватности и значимости модели.
Среднеквадратическая ошибка аппроксимации.
Сравнение факторных признаков по силе воздействия на результат: построение стандартизованного уравнения регрессии и расчет коэффициентов эластичности.
Построение модели множественной регрессии.
Экономическая интерпретация параметров регрессионной модели.
Литература: 3, 4, 5, 7.
Тема 4. Гетероскедастичность. Тесты на гетероскедастичность: их преимущества и недостатки. Устранение гетероскедастичности. Автокорреляция. Тесты для проверки наличия автокорреляции остатков: их преимущества и недостатки. Мультиколлинеарность. Признаки и последствия наличия мультиколлинеарности. Устранение мультиколлинеарности.
Обобщенная линейная модель множественной регрессии.
Определение наличия гетероскедастичности по тесту Голдфелда-Кванда.
Определение характера гетероскедастичности по тесту Глейзера.
Определение наличия автокорреляции по тесту Дарбина –Уотсона между соседними уровнями.
Применение теста Бреуша-Годфри для определение наличия автокорреляции.
Понятие мультиколлинеарности и основные признаки мультиколлинеарности.
Методы устранения мультиколлинеарности.
Литература: 3, 4, 5, 7.