
- •Автор-составитель:
- •1. Цели и задачи дисциплины
- •2. Требования к уровню освоения дисциплины
- •3. Объем дисциплины
- •3.1 Объем дисциплины и виды учебной работы
- •3.2 Распределение часов по темам и видам учебной работы
- •4. Содержание курса
- •Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
- •Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
- •Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
- •Тема 7. Нелинейные регрессионные модели и их линеаризация.
- •Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
- •5. Темы практических занятий
- •Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
- •Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
- •Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
- •Тема 7. Нелинейные регрессионные модели и их линеаризация.
- •Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
- •6. Задания для самостоятельной работы студентов
- •Задача 2.1.
- •Задача 2.2.
- •Задача 2.3.
- •Задача 2.4.
- •Задача 3.1.
- •Задача 3.2.
- •Задача 3.3.
- •Задача 4.2.
- •Задача 4.3.
- •Задача 4.4.
- •Задача 4.5.
- •Задача 4.6.
- •Задача 7.1.
- •Задача 7.2.
- •Задача 7.3.
- •Задача 7.4.
- •Задача 8.1.
- •Задача 8.2.
- •Задача 8.3.
- •Вариант 1.
- •Вариант 2.
- •Вариант 3.
- •Вариант 4.
- •Вариант 5.
- •Вариант 6.
- •Вариант 7.
- •Вариант 8.
- •Вариант 9.
- •Вариант 10.
- •Вариант 11.
- •Вариант 12.
- •Вариант 13.
- •Вариант 14.
- •Вариант 15.
- •Вариант 16.
- •Вариант 17.
- •Вариант 18.
- •Вариант 19.
- •Вариант 20.
- •Вариант 21.
- •Вариант 22.
- •Вариант 23.
- •Вариант 24.
- •Вариант 25.
- •6.3. Примерные темы рефератов
- •7. Варианты контрольных работ и методические указания по их выполнению
- •Регрессионные модели с одним уравнением
- •Системы одновременных уравнений
- •Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
- •Метод наименьших квадратов (мнк)
- •Геометрическая интерпретация
- •Матричная форма записи
- •Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
- •Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
- •Тема 7. Нелинейные регрессионные модели и их линеаризация.
- •Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
- •Варианты контрольных работ.
- •8. Вопросы для подготовки к зачету
- •9. Учебно-методическое обеспечение дисциплины
- •9.1 Литература
- •9.2 Методическое обеспечение дисциплины
- •9.3 Материально-техническое и информационное обеспечение дисциплин
- •10. Инновационные технологии, используемые в преподавании курса «экономико-математические методы и модели в таможенной статистике»
Вариант 19.
Для определения оценок параметров линейной модели множественной регрессии путем минимизации суммы квадратов отклонений фактических значений от расчетных применяется:
а) метод наименьших квадратов;
б) метод максимального правдоподобия;
в) метод Монте-Карло;
г) метод моментов.
Какая запись модели множественной регрессии является неверной:
а)
б)
;
в) ;
г)
.
Получена следующая модель пространственной выборки:
Y = 123,35 + 0,53X1 - 9,89X2 + ε.
Как интерпретируется коэффициент при факторном признаке X2:
а) при увеличении фактора X2 на 1% результативный признак в среднем будет увеличиваться на 9,89%;
б) при увеличении только фактора X2 на 1% результативный признак в среднем будет уменьшаться на 9,89%;
в) при увеличении только фактора X2 на 1 единицу измерения результативный признак будет в среднем уменьшаться на 9,89 своих единиц измерения;
г) при увеличении только фактора X2 на 1 единицу измерения результативный признак будет уменьшаться на 9,89 своих единиц измерения.
Для уравнения регрессии с двумя факторными признаками значения R2 и
составили соответственно 0,9878 и 0,9763. При добавлении в уравнение третьего фактора получили, что R2 =0,9882 и =0,9752. О чём говорит этот факт?
а) при расчете R2 и во второй раз была допущена ошибка, так как не может уменьшаться при добавлении нового фактора;
б) третий фактор оказался несущественным и его включение в модель нецелесообразно;
в) этот факт ничего не значит; им можно пренебречь.
При проверке модели множественной регрессии y=f(x1,x2,x3) + ε на наличие автокорреляции с помощью теста Дарбина-Уотсона было получено следующее значение d=1,79. При уровне значимости α=0,05 и числе наблюдений n=24 табличные значения составляют dн=1,10 и dв=1,66 . Какой вывод можно сделать по результатам теста:
а) гипотеза об отсутствии автокорреляции не отвергается (принимается);
б) вопрос об отвержении или принятии гипотезы остается открытым, так как расчетное значение попадает в зону неопределенности;
в) принимается альтернативная гипотеза о наличии положительной автокорреляции;
г) принимается альтернативная гипотеза о наличии отрицательной автокорреляции;
При исследовании зависимости объема потребления продукта А (y) от времени года были введены следующие фиктивные переменные: d1 (1 - если месяц зимний, 0 – в остальных случаях), d2 (1 - если месяц весенний, 0 – в остальных случаях), d3 (1 - если месяц летний, 0 – в остальных случаях) и получено следующее уравнение Y = b0 + b1d1 + b2d2 + b3d3+ ε.
Чему равна разница среднемесячного объема потребления между весенними и осенними месяцами:
а) b0;
б) b2;
в) b0 – b2;
г) b0 + b2.
В производственной функции Кобба-Дугласа Y = AKαLβ ε параметр α соответствует коэффициенту:
а) корреляции;
б) детерминации;
в) эластичности;
г) автокорреляции.
Чему равен параметр авторегрессии в модели вида yt = -0,71yt-1 + εt:
а) 0,71;
б) 0,712;
в) -0,71;
г) (-0,71)2.
Изучается зависимость объема ВВП (Y, млрд. долл.) от уровня прибыли в экономике (Хt, млрд. долл.). Получена следующая модель с распределенным лагом:
Yt = 0,65∙Xt + 0,30∙Xt-1 + 0,10∙Xt-2 + 0,05∙Xt-3 + εt.
Чему равен краткосрочный мультипликатор:
а) 0,05;
б) 0,65;
в) 0,30;
г) 0,95.
Структурная форма модели имеет вид:
где: Ct – совокупное потребление в период t, Yt – совокупный доход в период t, It – инвестиции в период t, Тt – налоги в период t, Gt – государственные расходы в период t, Yt-1 – совокупный доход в период t-1. |
Сколько предопределенных переменных в данной системе:
а) 2;
б) 3;
в) 4;
г) 5.