
- •Автор-составитель:
- •1. Цели и задачи дисциплины
- •2. Требования к уровню освоения дисциплины
- •3. Объем дисциплины
- •3.1 Объем дисциплины и виды учебной работы
- •3.2 Распределение часов по темам и видам учебной работы
- •4. Содержание курса
- •Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
- •Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
- •Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
- •Тема 7. Нелинейные регрессионные модели и их линеаризация.
- •Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
- •5. Темы практических занятий
- •Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
- •Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
- •Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
- •Тема 7. Нелинейные регрессионные модели и их линеаризация.
- •Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
- •6. Задания для самостоятельной работы студентов
- •Задача 2.1.
- •Задача 2.2.
- •Задача 2.3.
- •Задача 2.4.
- •Задача 3.1.
- •Задача 3.2.
- •Задача 3.3.
- •Задача 4.2.
- •Задача 4.3.
- •Задача 4.4.
- •Задача 4.5.
- •Задача 4.6.
- •Задача 7.1.
- •Задача 7.2.
- •Задача 7.3.
- •Задача 7.4.
- •Задача 8.1.
- •Задача 8.2.
- •Задача 8.3.
- •Вариант 1.
- •Вариант 2.
- •Вариант 3.
- •Вариант 4.
- •Вариант 5.
- •Вариант 6.
- •Вариант 7.
- •Вариант 8.
- •Вариант 9.
- •Вариант 10.
- •Вариант 11.
- •Вариант 12.
- •Вариант 13.
- •Вариант 14.
- •Вариант 15.
- •Вариант 16.
- •Вариант 17.
- •Вариант 18.
- •Вариант 19.
- •Вариант 20.
- •Вариант 21.
- •Вариант 22.
- •Вариант 23.
- •Вариант 24.
- •Вариант 25.
- •6.3. Примерные темы рефератов
- •7. Варианты контрольных работ и методические указания по их выполнению
- •Регрессионные модели с одним уравнением
- •Системы одновременных уравнений
- •Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
- •Метод наименьших квадратов (мнк)
- •Геометрическая интерпретация
- •Матричная форма записи
- •Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
- •Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
- •Тема 7. Нелинейные регрессионные модели и их линеаризация.
- •Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
- •Варианты контрольных работ.
- •8. Вопросы для подготовки к зачету
- •9. Учебно-методическое обеспечение дисциплины
- •9.1 Литература
- •9.2 Методическое обеспечение дисциплины
- •9.3 Материально-техническое и информационное обеспечение дисциплин
- •10. Инновационные технологии, используемые в преподавании курса «экономико-математические методы и модели в таможенной статистике»
Вариант 15.
Переход к стандартизованным переменным осуществляется для
а) устранения мультиколлинеарности;
б) устранения гетероскедастичности;
в) для сравнения влияния на зависимую переменную объясняющих переменных, выраженных разными единицами измерения;
г) устранения автокорреляции.
При исследовании зависимости балансовой прибыли предприятия торговли (Y, тыс. руб.) от фонда оплаты труда (Х1, тыс. руб.) и объема продаж по безналичному расчету (Х2, тыс. руб.) получена следующая модель:
Y = 5933,100 + 0,916X1 + 0,065X2 + ε.
(2,09) (6,92) (2,59)
В скобках указаны расчетные значения t-критерия Стьюдента для коэффициентов уравнения. При уровне значимости α=0,05 (tтабл= 2,07) можно утверждать, что значимы коэффициенты регрессии:
а) b0 и b2;
б) b1;
в) все коэффициенты;
г) ни один не значим.
Проверить гипотезу об отсутствии автокорреляции в модели позволяет тест:
а) Уайта;
б) Бреуша-Годфри;
в) Голдфельда-Квандта;
г) Дарбина-Уотсона.
При проверке модели множественной регрессии y=f(x1,x2,x3) + ε на наличие автокорреляции с помощью теста Дарбина-Уотсона было получено следующее значение d=3,75. При уровне значимости α=0,05 и числе наблюдений n=20 табличные значения составляют dн=1,00 и dв=1,68. Какой вывод можно сделать по результатам теста:
а) гипотеза об отсутствии автокорреляции не отвергается (принимается);
б) вопрос об отвержении или принятии гипотезы остается открытым, так как расчетное значение попадает в зону неопределенности;
в) принимается альтернативная гипотеза о наличии положительной автокорреляции;
г) принимается альтернативная гипотеза о наличии отрицательной автокорреляции;
Сколько бинарных переменных потребуется ввести для построения модели, описывающей тенденцию ряда при наличии двух структурных изменений (в моменты времени t0 и t1):
а) 1;
б) 2;
в) 3;
г) 4.
При исследовании зависимости объема потребления продукта А (y) от времени года были введены следующие фиктивные переменные: d1 (1 - если месяц зимний, 0 – в остальных случаях), d2 (1 - если месяц весенний, 0 – в остальных случаях), d3 (1 - если месяц летний, 0 – в остальных случаях) и получено следующее уравнение Y = b0 + b1d1 + b2d2 + b3d3+ ε.
Чему равен среднемесячный объем потребления для осенних месяцев:
а) b0;
б) b0 + b1;
в) b0 + b2;
г) b0 + b3.
Зависимость ежедневного среднедушевого потребления кофе (в чашках) от среднегодовой цены кофе выражается уравнением: lnY = 0,85 - 0,25lnX+ε. Чему равен коэффициент эластичности потребления кофе по цене:
а) 0,25;
б) -0,25;
в) е-0,25;
г) 0,85.
Временной ряд описывается следующей моделью:
yt = -0,4yt-1 + εt , где εt - белый шум.
Чему равно значение автокорреляционной функции для τ=3:
а) (-0,4)3;
б) 0,43;
в) 3*0,4;
г) 3*(-0,5).
Изучается зависимость объема ВВП (Y, млрд. долл.) от уровня прибыли в экономике (Хt, млрд. долл.). Получена следующая модель с распределенным лагом:
Yt = 0,55∙Xt + 0,25∙Xt-1 + 0,14∙Xt-2 + 0,09∙Xt-3 + εt.
Чему равен краткосрочный мультипликатор:
а) 0,55;
б) 0,25;
в) 0,80;
г) (0,55-0,25).
Система одновременных регрессионных уравнений состоит из трех уравнений: сверхидентифицируемого, неидентифицируемого и идентифицируемого. Тогда модель является:
а) идентифицируемой;
б) неидентифицируемой;
в) сверхидентифицируемой.