
- •Автор-составитель:
- •1. Цели и задачи дисциплины
- •2. Требования к уровню освоения дисциплины
- •3. Объем дисциплины
- •3.1 Объем дисциплины и виды учебной работы
- •3.2 Распределение часов по темам и видам учебной работы
- •4. Содержание курса
- •Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
- •Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
- •Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
- •Тема 7. Нелинейные регрессионные модели и их линеаризация.
- •Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
- •5. Темы практических занятий
- •Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
- •Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
- •Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
- •Тема 7. Нелинейные регрессионные модели и их линеаризация.
- •Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
- •6. Задания для самостоятельной работы студентов
- •Задача 2.1.
- •Задача 2.2.
- •Задача 2.3.
- •Задача 2.4.
- •Задача 3.1.
- •Задача 3.2.
- •Задача 3.3.
- •Задача 4.2.
- •Задача 4.3.
- •Задача 4.4.
- •Задача 4.5.
- •Задача 4.6.
- •Задача 7.1.
- •Задача 7.2.
- •Задача 7.3.
- •Задача 7.4.
- •Задача 8.1.
- •Задача 8.2.
- •Задача 8.3.
- •Вариант 1.
- •Вариант 2.
- •Вариант 3.
- •Вариант 4.
- •Вариант 5.
- •Вариант 6.
- •Вариант 7.
- •Вариант 8.
- •Вариант 9.
- •Вариант 10.
- •Вариант 11.
- •Вариант 12.
- •Вариант 13.
- •Вариант 14.
- •Вариант 15.
- •Вариант 16.
- •Вариант 17.
- •Вариант 18.
- •Вариант 19.
- •Вариант 20.
- •Вариант 21.
- •Вариант 22.
- •Вариант 23.
- •Вариант 24.
- •Вариант 25.
- •6.3. Примерные темы рефератов
- •7. Варианты контрольных работ и методические указания по их выполнению
- •Регрессионные модели с одним уравнением
- •Системы одновременных уравнений
- •Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
- •Метод наименьших квадратов (мнк)
- •Геометрическая интерпретация
- •Матричная форма записи
- •Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
- •Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
- •Тема 7. Нелинейные регрессионные модели и их линеаризация.
- •Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
- •Варианты контрольных работ.
- •8. Вопросы для подготовки к зачету
- •9. Учебно-методическое обеспечение дисциплины
- •9.1 Литература
- •9.2 Методическое обеспечение дисциплины
- •9.3 Материально-техническое и информационное обеспечение дисциплин
- •10. Инновационные технологии, используемые в преподавании курса «экономико-математические методы и модели в таможенной статистике»
Вариант 9.
Укажите неправильную последовательность этапов эконометрического моделирования:
а) идентификация, информационный, верификация;
б) информационный, верификация, идентификация;
в) постановочный, априорный, параметризация;
г) априорный, параметризация, идентификация.
Согласно методу наименьших квадратов минимизируется:
а)
;
б)
;
в)
;
г)
.
При исследовании зависимости оборота розничной торговли (Y, млрд. руб.) от трех факторов: Х1 - денежные доходы населения, млрд. руб.; Х2 – численность безработных, млн. чел.; Х3 – официальный курс рубля по отношению к доллару США получена следующая модель:
Y = 55,74 + 0,33X1 – 4,98X2 + 2,38X3 + ε.
При увеличении только официального курса рубля по отношению к доллару США на 1 руб. оборот розничной торговли в среднем:
а) увеличится на 2,38 млрд. руб.;
б) увеличится на 2,38%;
в) уменьшится на 2,38 млрд. руб.;
г) останется неизменным.
Проверить гипотезу об отсутствии гетероскедастичности в модели позволяет тест:
а) Дарбина-Уотсона;
б) Бреуша-Годфри;
в) Голдфельда-Квандта;
г) Чоу.
При проверке модели множественной регрессии y=f(x1,x2,x3) + ε на наличие автокорреляции с помощью теста Дарбина-Уотсона было получено следующее значение d=1,96. При уровне значимости α=0,05 и числе наблюдений n=20 табличные значения составляют dн=1,00 и dв=1,68. Какой вывод можно сделать по результатам теста:
а) гипотеза об отсутствии автокорреляции не отвергается (принимается);
б) вопрос об отвержении или принятии гипотезы остается открытым, так как расчетное значение попадает в зону неопределенности;
в) принимается альтернативная гипотеза о наличии положительной автокорреляции;
г) принимается альтернативная гипотеза о наличии отрицательной автокорреляции;
Изучается зависимость спроса на товар (Y, руб.) по трем регионам (А, В, С). Сколько фиктивных переменных, характеризующих проживание опрошенных в том или ином регионе, необходимо включить в уравнение регрессии:
а) 1;
б) 2;
в) 3;
г) 4.
Функция Кобба-Дугласа имеет вид Y = 0,66K0,23L0,81 ε. Можно сказать, что эффект от масштаба производства:
а) возрастающий;
б) убывающий;
в) постоянный.
Процесс Юла описывается уравнением:
а) Y = AKαLβ ε;
б) yt = b0+ b1yt-1 + b2yt-2 + εt;
в) yt= b0+ b1yt-1 + εt – γ1εt-1;
г) yt = εt – γ1εt-1 – γ2εt-2.
Краткосрочный мультипликатор представляет собой:
а) представляет собой период времени, в течение которого буде реализована половина общего воздействия фактора на результат;
б) абсолютное изменение в долгосрочном периоде t+l результата y под влиянием изменения на 1 ед. фактора x;
в) абсолютное изменение yt при изменении xt на 1 ед. своего измерения в некоторый фиксированный момент времени t, без учета воздействия лаговых значений фактора x;
г) средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора в момент времени t.
Двухшаговый метод наименьших квадратов можно применять для системы, состоящей из:
а) трех идентифицируемых уравнений;
б) двух идентифицируемых и неидентифицируемого уравнений;
в) двух сверхидентифицируемых и идентифицируемого уравнений;
г) идентифицируемого и двух сверхидентифицируемых уравнений.