
- •Автор-составитель:
- •1. Цели и задачи дисциплины
- •2. Требования к уровню освоения дисциплины
- •3. Объем дисциплины
- •3.1 Объем дисциплины и виды учебной работы
- •3.2 Распределение часов по темам и видам учебной работы
- •4. Содержание курса
- •Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
- •Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
- •Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
- •Тема 7. Нелинейные регрессионные модели и их линеаризация.
- •Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
- •5. Темы практических занятий
- •Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
- •Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
- •Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
- •Тема 7. Нелинейные регрессионные модели и их линеаризация.
- •Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
- •6. Задания для самостоятельной работы студентов
- •Задача 2.1.
- •Задача 2.2.
- •Задача 2.3.
- •Задача 2.4.
- •Задача 3.1.
- •Задача 3.2.
- •Задача 3.3.
- •Задача 4.2.
- •Задача 4.3.
- •Задача 4.4.
- •Задача 4.5.
- •Задача 4.6.
- •Задача 7.1.
- •Задача 7.2.
- •Задача 7.3.
- •Задача 7.4.
- •Задача 8.1.
- •Задача 8.2.
- •Задача 8.3.
- •Вариант 1.
- •Вариант 2.
- •Вариант 3.
- •Вариант 4.
- •Вариант 5.
- •Вариант 6.
- •Вариант 7.
- •Вариант 8.
- •Вариант 9.
- •Вариант 10.
- •Вариант 11.
- •Вариант 12.
- •Вариант 13.
- •Вариант 14.
- •Вариант 15.
- •Вариант 16.
- •Вариант 17.
- •Вариант 18.
- •Вариант 19.
- •Вариант 20.
- •Вариант 21.
- •Вариант 22.
- •Вариант 23.
- •Вариант 24.
- •Вариант 25.
- •6.3. Примерные темы рефератов
- •7. Варианты контрольных работ и методические указания по их выполнению
- •Регрессионные модели с одним уравнением
- •Системы одновременных уравнений
- •Тема 2. Модель парной регрессии. Метод наименьших квадратов. Геометрическая интерпретация. Матричная форма записи. Линейная регрессионная модель. Теорема Гаусса-Маркова. Оценка дисперсии ошибок 2
- •Метод наименьших квадратов (мнк)
- •Геометрическая интерпретация
- •Матричная форма записи
- •Тема 5. Системы линейных одновременных уравнений. Идентификация систем одновременных уравнений. Двухшаговый, трехшаговый и косвенный мнк.
- •Тема 6. Обобщенный метод наименьших квадратов. Теорема Айткена. Фиктивные переменные. Построение регрессионных моделей по неоднородным данным. Тест Чоу.
- •Тема 7. Нелинейные регрессионные модели и их линеаризация.
- •Тема 8. Модели стационарных и нестационарных рядов. Прогнозирование, основанное на использовании моделей временных рядов.
- •Варианты контрольных работ.
- •8. Вопросы для подготовки к зачету
- •9. Учебно-методическое обеспечение дисциплины
- •9.1 Литература
- •9.2 Методическое обеспечение дисциплины
- •9.3 Материально-техническое и информационное обеспечение дисциплин
- •10. Инновационные технологии, используемые в преподавании курса «экономико-математические методы и модели в таможенной статистике»
Вариант 1.
Задачами регрессионного анализа являются:
а) выбор показателя, характеризующего тесноту связи между переменными.
б) оценка неизвестных параметров функции регрессии;
в) установление формы зависимости между переменными;
г) оценка тесноты связи между переменными;
При исследовании зависимости балансовой прибыли предприятия торговли (Y, тыс. руб.) от фонда оплаты труда (Х1, тыс. руб.) и объема продаж по безналичному расчету (Х2, тыс. руб.) получена следующая модель:
Y = 5933,100 + 0,916X1 + 0,065X2 + ε.
Как интерпретируется коэффициент при факторном признаке X1:
а) при увеличении фонда оплаты труда на 1% балансовая прибыль предприятия торговли в среднем будет увеличиваться на 9,16%;
б) при увеличении только фонда оплаты труда на 1% балансовая прибыль предприятия торговли в среднем будет увеличиваться на 0,916%;
в) при увеличении только фонда оплаты труда на 1 тыс. руб. балансовая прибыль предприятия торговли будет увеличиваться на 0,916 тыс. руб.;
г) при уменьшении только фонда оплаты труда на 1 тыс. руб. балансовая прибыль предприятия торговли в среднем будет уменьшаться на 9,16 тыс. руб.
Если дисперсия остатков модели множественной регрессии не является постоянной величиной, то говорят о наличии в модели:
а) мультиколлинеарности;
б) гетероскедастичности;
в) автокорреляции;
г) гомоскедастичности.
Изучается зависимость спроса на товар (Y, руб.) от дохода населения (X, тыс. руб.) по двум регионам (А, В). Сколько фиктивных переменных, характеризующих проживание опрошенных в том или ином регионе, необходимо включить в уравнение регрессии:
а) 1;
б) 2;
в) 3;
г) 4.
Исследуется потребление продукта P в трех регионах A, B, C. Были введены следующие фиктивные переменные: z1 (1 - регион A, 0 - в остальных случаях) и z2 (1 - регион B, 0 - в остальных случаях), и получено следующее уравнение Y = b0 + b1z1 + b2z2 + ε.
Чему равен объем потребления продукта P в регионе B:
а) b0;
б) b0 + b1;
в) b1;
г) b0 – b1.
Зависимость спроса на масло (Y, количество масла на душу населения, кг) от цены (Х1, руб.) и от величины дохода на душу населения (Х2, тыс. руб.) выражается уравнением: Y = 0,056 X1-0,858X21,126ε. Чему равен коэффициент эластичности спроса на масло по цене:
а) 0,858;
б) -0,858;
в) -0,858/1,126;
г) 0,056.
Модель авторегрессии скользящего среднего АРСС(1,1) описывается уравнением:
а) yt = b0+ b1yt-1 + εt;
б) yt = b0+ b1yt-1 + b2yt-2 + εt;
в) yt = b0+ b1yt-1 + εt – γ1εt-1;
г) yt = εt – γ1εt-1.
По данным о динамике оборота розничной торговли (Y, млрд. руб.) и дохода населения (X, млрд. руб.) была получена следующая модель с распределенными лагами:
Yt = 0,50∙Xt + 0,25∙Xt-1 + 0,13∙Xt-2 + 0,13∙Xt-3 + εt.
(9,2) (6,3) (3,5) (3,0)
В скобках указаны значения t-критерия Стьюдента для коэффициентов регрессии. Табличное значение при уровне значимости 0,05 составляет 2,07. Целесообразно ли было выбирать величину лага, равную 3:
а) да, так как все коэффициенты модели являются значимыми по t-критерию Стьюдента;
б) нет, так как по t-критерию Стьюдента все коэффициенты модели являются незначимыми;
в) нельзя сказать, так как t-критерий Стьюдента не дает ответа на данный вопрос.
Система линейных функций эндогенных переменных от экзогенных называется:
а) структурной формой модели;
б) приведенной формой модели;
в) стандартизованной формой модели.
Структурная форма модели имеет вид:
где: Ct – расходы на потребление в период t, Ct-1 – расходы на потребление в период t-1, Yt – ВВП в период t, It – инвестиции в период t, It-1 – инвестиции в период t-1, rt – процентная ставка в период t, Gt – государственные расходы в период t, Mt – денежная масса в период t-1. |

Перечислите предопределенные переменные:
а) Сt, Yt, rt, It;
б) Сt, Yt, rt, It, Ct-1, It-1;
в) Ct-1, It-1, Gt, Mt;
г) Gt, Mt.