
- •Содержание
- •Введение
- •Раздел 1 Введение в регрессионный анализ и планирование эксперимента Тема 1 Основы регрессионного анализа
- •1.1 Понятие корреляционного и регрессионного анализа
- •1.2. Определение параметров линейного однофакторного уравнения регрессии
- •1.3. Оценка величины погрешности линейного однофакторного уравнения
- •1.4. Проблема автокорреляции остатков. Критерий Дарбина-Уотсона
- •Тема 2 Использование линейного регрессионного анализа
- •2.1 Построение уравнения степенной регрессии
- •2.2. Двухфакторные и многофакторные уравнения регрессии
- •2.3. Применения уравнения регрессии. Эконометрика
- •2.4. Примеры линеаризации уравнения регрессии
- •Контрольные вопросы к темам 1,2:
- •Тема 3 Основные понятия и определения планирования эксперимента
- •3.1. Основные понятия и определения планирования эксперимента
- •Разложение функции отклика в степенной ряд, кодирование факторов
- •Тема 4 Преобразования при обработке результатов эксперимента
- •4.1 Матричные преобразования при обработке результатов эксперимента
- •Ортогональное планирование эксперимента
- •Контрольные вопросы к темам 3,4:
- •Раздел 2 Статистическое исследование зависимостей Тема 5 Типовые задачи практики статистического исследования зависимостей
- •5.1 Схема взаимодействия переменных при статистическом исследовании зависимостей
- •5.2 Конечные прикладные цели статистического исследования зависимостей
- •5.3 Типовые задачи практики статистического исследования зависимостей
- •5.4 Основные типы зависимостей между количественными переменными
- •Тема 6 Корреляционный анализ
- •6.1 Корреляционный анализ
- •6.2 Оценка степени тесноты связи переменных
- •6.3 Особенности корреляционного анализа для количественных переменных
- •6.4 Особенности корреляционного анализа для неколичественных характеристик
- •Тема 7 Регрессионный анализ
- •7.1 Примеры использования регрессионного анализа
- •7.2 Классическое определение регрессии
- •7.3 Оптимизационный подход в регрессионном анализе
- •7.4 Рекомендации по выбору вида регрессии
- •Тема 8 Линейный регрессионный анализ
- •8.1 Простая линейная регрессия
- •8.2 Доверительные интервалы и проверка гипотез
- •8.3 Множественная линейная регрессия
- •Тема 9 Нелинейная, непараметрическая и пошаговая регрессия
- •9.1 Итерационные методы поиска оценок наименьших квадратов для параметров регрессии
- •9.2 Поиск начального приближения для итерационных процедур
- •9.3 Непараметрический подход в регрессионном анализе
- •9.4 Пошаговая регрессия
- •Раздел 4 Статистическое исследование зависимостей Тема 9 Математический инструментарий статистического исследования зависимостей
- •9.1 Схема взаимодействия переменных при статистическом исследовании зависимостей
- •9.2 Конечные прикладные цели статистического исследования зависимостей
- •9.3 Математический инструментарий статистического исследования зависимостей
- •9.4 Краткая характеристика математического инструментария
- •Тема 10 Типовые задачи практики
- •10.1 Типовые задачи практики статистического исследования зависимостей
- •10.2 Основные типы зависимостей между количественными переменными
- •10.3 Этапы статистического исследования зависимостей
- •10.4 Анализ точности полученных уравнений связи
- •Тема 11 Корреляционный анализ
- •11.1 Корреляционный анализ
- •11.2 Оценка степени тесноты связи переменных
- •11.3 Особенности корреляционного анализа для количественных переменных
- •11.4 Особенности корреляционного анализа для неколичественных характеристик
- •Тема 12 Регрессионный анализ
- •12.1 Примеры использования регрессионного анализа
- •12.2 Классическое определение регрессии
- •12.3 Оптимизационный подход в регрессионном анализе
- •12.4 Рекомендации по выбору вида регрессии
- •Тема 13 Линейный регрессионный анализ
- •13.1 Простая линейная регрессия
- •13.2 Доверительные интервалы и проверка гипотез
- •13.3 Множественная линейная регрессия
- •Тема 14 Нелинейная, непараметрическая и пошаговая регрессия
- •14.1 Итерационные методы поиска оценок наименьших квадратов для параметров регрессии
- •14.2 Поиск начального приближения для итерационных процедур
- •14.3 Непараметрический подход в регрессионном анализе
- •14.4 Пошаговая регрессия
- •14.5 Кластерная регрессия или классификация с учетом внешней цели
- •Литература
- •246019, Г. Гомель, ул. Советская, 104.
1.4. Проблема автокорреляции остатков. Критерий Дарбина-Уотсона
Часто для нахождения уравнений регрессии используются динамические ряды, т.е. последовательность экономических показателей за ряд лет (кварталов, месяцев), следующих друг за другом.
В этом случае имеется некоторая зависимость последующего значения показателя, от его предыдущего значения, которое называется автокорреляцией. В некоторых случаях зависимость такого рода является весьма сильной и влияет на точность коэффициента регрессии.
Пусть уравнение регрессии построено и имеет вид:
-
погрешность уравнения регрессии в год
t.
Явление
автокорреляции остатков состоит в том,
что в любой год t
остаток
не является случайной величиной, а
зависит от величины остатка предыдущего
года
.
В результате при использовании уравнения
регрессии могут быть большие ошибки.
Для определения наличия или отсутствия автокорреляции применяется критерий Дарбина-Уотсона:
.
Возможные значения критерия DW находятся в интервале от 0 до 4. Если автокорреляция остатков отсутствует, то DW2.
Тема 2 Использование линейного регрессионного анализа
2.1 Построение уравнения степенной регрессии
2.2. Двухфакторные и многофакторные уравнения регрессии
2.3. Применения уравнения регрессии. Эконометрика
2.1 Построение уравнения степенной регрессии
Уравнение степенной агрессии имеет вид:
,
где
a, b - параметры, которые определяются по данным таблицы наблюдений.
Таблица наблюдений составлена и имеет вид:
Таблица 2.1. Таблица наблюдений
x |
x1 |
x2 |
... |
xn |
y |
y1 |
y2 |
... |
yn |
Прологарифмируем исходное уравнение и в результате получим:
ln y = ln a + bln x .
Обозначим
ln
y
через
,
ln
a
как
,
а ln
x
как
.
В результате подстановки получим:
Данное уравнение есть ничто иное, как уравнение линейной регрессии, параметры которого мы умеем находить.
Для этого прологарифмируем исходные данные:
Таблица 2.1. Таблица значений наблюдений после преобразования
ln x |
ln x1 |
ln x2 |
... |
Ln xn |
ln y |
ln y1 |
ln y2 |
... |
Ln yn |
Далее
необходимо выполнить известные нам
вычислительные процедуры по нахождению
коэффициентов a
и b,
используя прологарифмированные исходные
данные. В результате получим значение
коэффициента b
и
.
Параметр a
можно найти по формуле:
.
В этих же целях можно воспользоваться функцией EXP в Excel.
2.2. Двухфакторные и многофакторные уравнения регрессии
Линейное двухфакторное уравнение регрессии имеет вид:
,
где
-
параметры;
-
экзогенные переменные;
y - эндогенная переменная.
Идентификацию этого уравнения лучше всего производить с использованием функции Excel ЛИНЕЙН.
Степенное двухфакторное уравнение регрессии имеет вид:
где
-
параметры;
-
экзогенные переменные;
Y - эндогенная переменная.
Для нахождения параметров этого уравнения его необходимо прологарифмировать. В результате получим:
.
Идентификацию этого уравнения также лучше всего производить с использованием функции Excel ЛИНЕЙН. Следует помнить, что мы получим не параметр a, а его логарифм, которое следует преобразовать в натуральное число.
Линейное многофакторное уравнения регрессии имеет вид:
где
n-
параметры;
n
- экзогенные переменные;
y - эндогенная переменная.
Идентификацию этого уравнения также лучше всего производить с использованием функции Excel ЛИНЕЙН.