- •Введение (лек1) Фотограмметрия и ее применение в различных областях деятельности человека.
- •Методы решения задач по фотоснимкам (в1)
- •Теория одиночного снимка (лек2)
- •1. Основные элементы центральной проекции кадрового снимка (в2)
- •.2 Некоторые свойства центральной проекции (в3)
- •3 Источники, влияющие на точность фотограмметрической обработки снимков. (в4)
- •1.Системы координат снимка. Элементы внутреннего ориентирования снимка.(в7)
- •2 Измерение цифровых снимков. (в8)
- •3. Внутреннее ориентирование снимка (в9)
- •4. Системы координат объекта. Элементы внешнего ориентирования снимка.(в10)
- •5.1.Формулы связи координат соответственных точек снимка и местности.(в11)
- •6.Формулы связи координат соответственных точек местности и горизонтального снимка.(в12)
- •7.Определение элементов внешнего ориентирования снимка по опорным точкам (обратная фотограмметрическая засечка).(в13) (лекция 4)
- •8.Формулы связи координат соответственных точек горизонтального и наклонного снимков, полученных из одного центра проекции (формулы трансформирования координат точек снимка). (в14)
- •1. Назначение и области применения.(в15)
- •3.Принцип цифрового ортофототрансформирования снимков. (в16)
- •4. Цифровое фототрансформирование снимков равнинной местности (в17)
- •5. Создание цифровых фотопланов (18)
- •6. Оценка точности цифровых трансформированных фотоснимков и фотопланов(в19)
Методы решения задач по фотоснимкам (в1)
1.Одиночный снимок. Наклонный. На нем изображена местность. Масштаб снимка не равен масштабу карты . Чтобы получить по снимку план местности следует преобразовать его в горизонтальный Р0 и привести к масштабу создаваемой карты Р`.
a
Этот
процесс называется
трансформированием
b снимков, а преобразования, которые используются
в данном процессе составляют часть
S фотограмметрии, называемой теорией
одиночного снимка.
P0 Практический результат – план местности (фотоплан),
по которому можно определять
P` геодезические координаты X г Yг и создавать
B карту равнинного района.
A
Рис.1
2
.Теория
пары снимков
лежит в основе стереофотограмметрии.
Имея пару снимков, можно измерив
S1 x1y1 x2y2 S2 стереоскопически координаты
a1 a2 изображения точки на снимках Р1 и Р2
P1 P2 вычислить трехмерные, геодезические
координаты любой точки местности, т.е
сгустить геодезическую сеть или
А составить топографическую карту
XYZ
.
Рис.2
3.Сгущение геодезических сетей (пространственная фототриангуляция).
Если произвести аэрофотосъемку (или космическую съемку) путем получения ряда перекрывающихся снимков маршрута или блока маршрутов, то можно последовательно сгустить геодезическую сеть в пределах всего участка съемки, имея лишь несколько опорных точек, геодезические координаты которых определены в поле.
S1
S2
S3
S4
p
p1 p2 p3 p4
q
Рис.3 Рис.4
Чтобы можно было решить эту задачу снимки должны иметь перекрытия: продольные – p и поперечные – q (рис.4).
Базируясь на этих трех основных теориях, составляющих современную фотограмметрию, можно решать все перечисленные задачи сгущения геодезических сетей по наземным, аэро- и космическим снимкам Земли или звездного неба, создавать топографические карты и планы местности, исследовать природные ресурсы земли, решать научные и инженерные задачи в разных областях народного хозяйства..
Главное же применение фотограмметрии – сгущение геодезических сетей и создание топографических карт. В соответствии с этим эта область применения фотограмметрии носит название фототопография.
