- •1. Предмет и задачи статистики.
- •2. Статистическая совокупность, её виды. Единицы совокупности и классификация их признаков.
- •3. Метод статистики и основные этапы статистического исследования.
- •4. Организация статистики в рб. Источники и способы получения статистической информации.
- •5. Виды статистического наблюдения. Способы собирания статистических сведений.
- •6. Программно-методологические вопросы плана статистического наблюдения.
- •7. Организационные вопросы плана статистического наблюдения.
- •8. Статистическая отчётность, принципы её организации, программа и виды.
- •9. Переписи и другие виды специально организованных статистических наблюдений.
- •10. Погрешности (ошибки) статистического наблюдения. Методы проверки достоверности статистических данных.
- •11. Сводка - вторая стадия статистического исследования. Её задачи, программа, план и техника.
- •12. Понятие о группировке, её задачи и виды.
- •14. Важнейшие группировки и классификации, применяемые в статистике.
- •13. Методологические вопросы построения группировок.
- •15. Ряды распределения, их виды и графическое изображение.
- •16. Статистические таблицы, их виды и основные правила построения и оформления.
- •17. Статистические показатели и их классификация.
- •18. Абсолютные статистические величины, их виды, значение и единицы измерения.
- •19. Относительные величины и область их применения. Способы их расчета и формы выражения.
- •20. Виды относительных величин.
- •21. Понятие о статистическом графике, его основные элементы и правила построения.
- •22. Виды статистических графиков и область их применения.
- •23. Сущность и значение средних величин. Основные научные положения теории средних. Определяющее свойство средней.
- •24. Средняя арифметическая, её основные математические свойства и методы расчета.
- •25. Средняя гармоническая и другие виды средних. Обусловленность выбора средней характером исходной информации.
- •26. Мода и медиана, их смысл и значение в социально-экономических исследованиях, способы вычисления.
- •27. Статистическое изучение вариации. Показатели вариации и методы их расчета.
- •28. Дисперсия, её математические свойства и методы расчета.
- •29. Дисперсия альтернативного признака.
- •30. Виды дисперсии и правило сложения дисперсий.
- •31. Коэффициент детерминации и эмпирическое корреляционное отношение как показатели тесноты связи между факторами в аналитической группировке.
- •32. Сущность выборочного наблюдения и его теоретические основы.
- •33. Виды и способы отбора единиц в выборочную совокупность.
- •34. Ошибки выборки и методы их расчета по среднему значению выборочного показателя и по доле признака выборочной совокупности.
- •35. Определение необходимой численности выборки.
- •36. Способы распространения результатов выборочного наблюдения на генеральную совокупность. Практика применения выборочных исследований в статистике.
- •37. Понятие о рядах динамики, их виды и правила построения.
- •38. Аналитические показатели динамического ряда, способы их расчета и взаимосвязь.
- •39. Средние показатели динамического ряда и методы их расчета.
- •40. Понятие тенденции ряда динамики и основные методы её выявления (укрупнение интервалов, способ скользящей средней.
- •41. Аналитическое выравнивание уровней ряда динамики. Уравнение тренда. Понятие о интерполяции и экстраполяции.
- •42. Сезонные колебания и методы их изучения.
- •43.Сущность индексов, задачи, решаемые индексным методом и классификация индексов.
- •44. Индивидуальные и общие (сводные) индексы. Принципы построения системы взаимосвязанных агрегатных индексов.
- •45. Средние индексы и их виды.
- •46. Индексный метод анализа динамики среднего уровня (индексы переменного, постоянного состава и структурных сдвигов).
- •47. Ряды индексов с постоянной и переменной базами сравнения, с постоянными и переменными весами, их взаимосвязь.
- •48. Взаимосвязи индексов.
- •49. Принципы построения многофакторных индексов.
- •50. Территориальные индексы.
- •51. Измерение связей между социально-экономическими явлениями – важнейшая задача статистики. Формы и виды взаимосвязей.
- •52. Статистические методы изучения связей: метод сравнения параллельных рядов, метод аналитических группировок, графический метод, балансовый метод.
- •53. Понятие линейной корреляции. Нахождение параметров уравнения регрессии, линейный коэффициент корреляции.
- •54. Понятие криволинейной зависимости, оценка тесноты связи при криволинейной зависимости.
- •55. Понятие о множественной корреляции.
52. Статистические методы изучения связей: метод сравнения параллельных рядов, метод аналитических группировок, графический метод, балансовый метод.
Для выявления связи, ее характера, направления в статистике используются методы приведения параллельных данных, балансовый, аналитических группировок, графический. Суть метода приведения параллельных данных состоит в следующем: приводятся два ряда данных о двух явлениях или двух признаков, связь между которыми необходимо выявить, и по характеру изменений делают заключения о наличии (если изменение величин одного ряда следует за изменением величин другого ряда) или об отсутствии связи (если никакого твердого, устойчивого соответствия в их изменениях нет). Балансовый метод заключается в построении балансов-таблиц, в которых итог одной части равен итогу другой (например, баланс производства сахара и его потребления).
Посредством факторных группировок устанавливаются и изучаются причинно-следственные связи между факторными и результативными признаками. Они основаны на изучении того, как в массовых явлениях с изменением одного или нескольких факторных признаков изменяется результативный признак. Например, с увеличением размера внесенных органических удобрений средняя урожайность зерновых культур от группы к группе закономерно возрастает.
Характер зависимости между двумя признаками (факторным и результативным) можно наглядно увидеть, если построить график, отложив на оси абсцисс ранжированные (возрастающие) значения признака-фактора (x), а на оси ординат значения результативного признака (y). Нанеся на график точки, соответствующие значениям x и y, получим корреляционное поле, где по характеру расположения точек можно судить о направлении и силе связи. Если точки беспорядочно разбросаны по всему полю, это говорит о том, что зависимости между двумя признаками нет; если они будут концентрироваться вокруг оси, идущей от нижнего левого угла в верхний правый, то имеется прямая зависимость между варьирующими признаками; и если точки будут концентрироваться вокруг оси, идущей от верхнего левого угла в нижний правый, то имеется обратная зависимость.
Удобной формой изложения данных о взаимосвязанных признаках является корреляционная таблица, представляющая собой комбинационную статистическую таблицу, в которой сопрягаются ряды распределения факторного и результативного признаков. Если частоты концентрируются у диагонали, идущей из левого верхнего угла в правый нижний, то это указывает на то, что связь между факторными и результативными признаками близка к прямой, а если же в корреляционной таблице частоты концентрируются у диагонали, идущей из правого нижнего угла в верхний левый, то в подобных случаях отмечается обратная связь между признаками.
53. Понятие линейной корреляции. Нахождение параметров уравнения регрессии, линейный коэффициент корреляции.
Линейной корреляционная зависимость – зависимость, при которой связь между результатами и факторным признаком может быть выражена прямой.
Если две случайные величины Х и Y имеют в отношении друг друга линейные функции регрессии, то говорят, что величины Х и Y связаны линейной корреляционной зависимостью. Теорема: Если двумерная случайная величина (X, Y) распределена нормально, то Х и Y связаны линейной корреляционной зависимостью.
Для нахождения параметров необходимо решить следующую систему уравнений:
Для определения тесноты связи при линейной зависимости используется линейный коэффициент корреляции:
