- •1. Предмет и задачи статистики.
- •2. Статистическая совокупность, её виды. Единицы совокупности и классификация их признаков.
- •3. Метод статистики и основные этапы статистического исследования.
- •4. Организация статистики в рб. Источники и способы получения статистической информации.
- •5. Виды статистического наблюдения. Способы собирания статистических сведений.
- •6. Программно-методологические вопросы плана статистического наблюдения.
- •7. Организационные вопросы плана статистического наблюдения.
- •8. Статистическая отчётность, принципы её организации, программа и виды.
- •9. Переписи и другие виды специально организованных статистических наблюдений.
- •10. Погрешности (ошибки) статистического наблюдения. Методы проверки достоверности статистических данных.
- •11. Сводка - вторая стадия статистического исследования. Её задачи, программа, план и техника.
- •12. Понятие о группировке, её задачи и виды.
- •14. Важнейшие группировки и классификации, применяемые в статистике.
- •13. Методологические вопросы построения группировок.
- •15. Ряды распределения, их виды и графическое изображение.
- •16. Статистические таблицы, их виды и основные правила построения и оформления.
- •17. Статистические показатели и их классификация.
- •18. Абсолютные статистические величины, их виды, значение и единицы измерения.
- •19. Относительные величины и область их применения. Способы их расчета и формы выражения.
- •20. Виды относительных величин.
- •21. Понятие о статистическом графике, его основные элементы и правила построения.
- •22. Виды статистических графиков и область их применения.
- •23. Сущность и значение средних величин. Основные научные положения теории средних. Определяющее свойство средней.
- •24. Средняя арифметическая, её основные математические свойства и методы расчета.
- •25. Средняя гармоническая и другие виды средних. Обусловленность выбора средней характером исходной информации.
- •26. Мода и медиана, их смысл и значение в социально-экономических исследованиях, способы вычисления.
- •27. Статистическое изучение вариации. Показатели вариации и методы их расчета.
- •28. Дисперсия, её математические свойства и методы расчета.
- •29. Дисперсия альтернативного признака.
- •30. Виды дисперсии и правило сложения дисперсий.
- •31. Коэффициент детерминации и эмпирическое корреляционное отношение как показатели тесноты связи между факторами в аналитической группировке.
- •32. Сущность выборочного наблюдения и его теоретические основы.
- •33. Виды и способы отбора единиц в выборочную совокупность.
- •34. Ошибки выборки и методы их расчета по среднему значению выборочного показателя и по доле признака выборочной совокупности.
- •35. Определение необходимой численности выборки.
- •36. Способы распространения результатов выборочного наблюдения на генеральную совокупность. Практика применения выборочных исследований в статистике.
- •37. Понятие о рядах динамики, их виды и правила построения.
- •38. Аналитические показатели динамического ряда, способы их расчета и взаимосвязь.
- •39. Средние показатели динамического ряда и методы их расчета.
- •40. Понятие тенденции ряда динамики и основные методы её выявления (укрупнение интервалов, способ скользящей средней.
- •41. Аналитическое выравнивание уровней ряда динамики. Уравнение тренда. Понятие о интерполяции и экстраполяции.
- •42. Сезонные колебания и методы их изучения.
- •43.Сущность индексов, задачи, решаемые индексным методом и классификация индексов.
- •44. Индивидуальные и общие (сводные) индексы. Принципы построения системы взаимосвязанных агрегатных индексов.
- •45. Средние индексы и их виды.
- •46. Индексный метод анализа динамики среднего уровня (индексы переменного, постоянного состава и структурных сдвигов).
- •47. Ряды индексов с постоянной и переменной базами сравнения, с постоянными и переменными весами, их взаимосвязь.
- •48. Взаимосвязи индексов.
- •49. Принципы построения многофакторных индексов.
- •50. Территориальные индексы.
- •51. Измерение связей между социально-экономическими явлениями – важнейшая задача статистики. Формы и виды взаимосвязей.
- •52. Статистические методы изучения связей: метод сравнения параллельных рядов, метод аналитических группировок, графический метод, балансовый метод.
- •53. Понятие линейной корреляции. Нахождение параметров уравнения регрессии, линейный коэффициент корреляции.
- •54. Понятие криволинейной зависимости, оценка тесноты связи при криволинейной зависимости.
- •55. Понятие о множественной корреляции.
34. Ошибки выборки и методы их расчета по среднему значению выборочного показателя и по доле признака выборочной совокупности.
Различают среднюю (стандартную) ошибку выборки и предельную ошибку выборки.
Под
средней ошибкой выборки понимают такое
расхождение между средней выборочной
и средней генеральной совокупностями
,
которое не превышает
.
Средняя ошибка выборки при случайной повторной выборке (формула П.Л.Чебышева):
.
уменьшается при уменьшении колеблемости
признака, а также при увеличении объема
выборочной совокупности. Следовательно,
при уменьшении колеблемости признака
можно уменьшить объем выборочной
совокупности.
Средняя ошибка выборки при определении доли признака:
,
где
-
доля признака в генеральной совокупности;
- число единиц в выборочной совокупности;
- дисперсия доли признака.
Для бесповторного отбора:
для
определения ошибки выборочной средней
,
где
- число единиц в генеральной совокупности.
для
определения ошибки выборочной доли
.
Предельной ошибкой выборки принято называть максимально возможное расхождение , т.е. максимум ошибки при заданной вероятности ее появления.
Предельная ошибка при повторном отборе:
для
средней
,
где t
– заданный коэффициент доверия (критерий
кратности ошибки выборки).
t = 1 Р = 0,683
t = 2 Р = 0,954
t = 3 Р = 0,997
для
доли
.
При бесповторном отборе предельные ошибки выборки должны определяться:
для
средней
;
для
доли
.
Предельная ошибка выборки позволяет определять предельные значения характеристик генеральной совокупности при заданной вероятности и их доверительные интервалы:
Это
значит, что с заданной вероятностью
можно утверждать, что значение генеральной
средней можно ожидать в пределах
до
.
Рассчитывается
также относительная ошибка выборки:
.
35. Определение необходимой численности выборки.
Одной из важных задач при проведении выборочного наблюдения является установление необходимой численности выборочной совокупности, т.е. такой ее численности, которая обеспечивала бы получение данных, достаточно полно отражающих изучаемые свойства генеральной совокупности.
Необходимая
численность выборки
устанавливается в зависимости от
размеров предельной ошибки (
),
от величины коэффициента доверия (t)
и от размеров величины дисперсии (
).
При повторном отборе:
для
средней
обе
стороны возводим в квадрат
,
следовательно
.
для
доли
обе стороны возводим в квадрат
,
тогда
и
.
При бесповторном отборе:
для
средней
;
для
доли
;
.
36. Способы распространения результатов выборочного наблюдения на генеральную совокупность. Практика применения выборочных исследований в статистике.
Конечной целью выборочного наблюдения является характеристика генеральной совокупности на основании выборки. При этом на генеральную совокупность распространяют не только средние и относительные величины, но производят и расчет объемных показателей по всей генеральной совокупности на основании полученных в результате выборочного наблюдения данных. Применяют следующие способы распространения выборочных данных на всю генеральную совокупность:
1. Способ прямого пересчета основан на том, что средние величины или соотношения отдельных частей, полученные в результате выборочного наблюдения, умножают на число единиц генеральной совокупности.
2. Способ коэффициентов основан на том, что сопоставляя данные сплошного наблюдения с данными выборочного обследования устанавливают коэффициент, который служит для внесения поправок в данные сплошного наблюдения.
