- •1. Предмет и задачи статистики.
- •2. Статистическая совокупность, её виды. Единицы совокупности и классификация их признаков.
- •3. Метод статистики и основные этапы статистического исследования.
- •4. Организация статистики в рб. Источники и способы получения статистической информации.
- •5. Виды статистического наблюдения. Способы собирания статистических сведений.
- •6. Программно-методологические вопросы плана статистического наблюдения.
- •7. Организационные вопросы плана статистического наблюдения.
- •8. Статистическая отчётность, принципы её организации, программа и виды.
- •9. Переписи и другие виды специально организованных статистических наблюдений.
- •10. Погрешности (ошибки) статистического наблюдения. Методы проверки достоверности статистических данных.
- •11. Сводка - вторая стадия статистического исследования. Её задачи, программа, план и техника.
- •12. Понятие о группировке, её задачи и виды.
- •14. Важнейшие группировки и классификации, применяемые в статистике.
- •13. Методологические вопросы построения группировок.
- •15. Ряды распределения, их виды и графическое изображение.
- •16. Статистические таблицы, их виды и основные правила построения и оформления.
- •17. Статистические показатели и их классификация.
- •18. Абсолютные статистические величины, их виды, значение и единицы измерения.
- •19. Относительные величины и область их применения. Способы их расчета и формы выражения.
- •20. Виды относительных величин.
- •21. Понятие о статистическом графике, его основные элементы и правила построения.
- •22. Виды статистических графиков и область их применения.
- •23. Сущность и значение средних величин. Основные научные положения теории средних. Определяющее свойство средней.
- •24. Средняя арифметическая, её основные математические свойства и методы расчета.
- •25. Средняя гармоническая и другие виды средних. Обусловленность выбора средней характером исходной информации.
- •26. Мода и медиана, их смысл и значение в социально-экономических исследованиях, способы вычисления.
- •27. Статистическое изучение вариации. Показатели вариации и методы их расчета.
- •28. Дисперсия, её математические свойства и методы расчета.
- •29. Дисперсия альтернативного признака.
- •30. Виды дисперсии и правило сложения дисперсий.
- •31. Коэффициент детерминации и эмпирическое корреляционное отношение как показатели тесноты связи между факторами в аналитической группировке.
- •32. Сущность выборочного наблюдения и его теоретические основы.
- •33. Виды и способы отбора единиц в выборочную совокупность.
- •34. Ошибки выборки и методы их расчета по среднему значению выборочного показателя и по доле признака выборочной совокупности.
- •35. Определение необходимой численности выборки.
- •36. Способы распространения результатов выборочного наблюдения на генеральную совокупность. Практика применения выборочных исследований в статистике.
- •37. Понятие о рядах динамики, их виды и правила построения.
- •38. Аналитические показатели динамического ряда, способы их расчета и взаимосвязь.
- •39. Средние показатели динамического ряда и методы их расчета.
- •40. Понятие тенденции ряда динамики и основные методы её выявления (укрупнение интервалов, способ скользящей средней.
- •41. Аналитическое выравнивание уровней ряда динамики. Уравнение тренда. Понятие о интерполяции и экстраполяции.
- •42. Сезонные колебания и методы их изучения.
- •43.Сущность индексов, задачи, решаемые индексным методом и классификация индексов.
- •44. Индивидуальные и общие (сводные) индексы. Принципы построения системы взаимосвязанных агрегатных индексов.
- •45. Средние индексы и их виды.
- •46. Индексный метод анализа динамики среднего уровня (индексы переменного, постоянного состава и структурных сдвигов).
- •47. Ряды индексов с постоянной и переменной базами сравнения, с постоянными и переменными весами, их взаимосвязь.
- •48. Взаимосвязи индексов.
- •49. Принципы построения многофакторных индексов.
- •50. Территориальные индексы.
- •51. Измерение связей между социально-экономическими явлениями – важнейшая задача статистики. Формы и виды взаимосвязей.
- •52. Статистические методы изучения связей: метод сравнения параллельных рядов, метод аналитических группировок, графический метод, балансовый метод.
- •53. Понятие линейной корреляции. Нахождение параметров уравнения регрессии, линейный коэффициент корреляции.
- •54. Понятие криволинейной зависимости, оценка тесноты связи при криволинейной зависимости.
- •55. Понятие о множественной корреляции.
31. Коэффициент детерминации и эмпирическое корреляционное отношение как показатели тесноты связи между факторами в аналитической группировке.
Отношение
межгрупповой дисперсии 2
к общей
даст коэффициент детерминации:
который характеризует долю вариации
результативного признака, обусловленную
вариацией факторного признака, положенного
в основание группировки.
Показатель,
полученный как корень квадратный из
коэффициента детерминации, называется
коэффициентом эмпирического корреляционного
отношения, т.е.:
Он характеризует тесноту связи между результативным и факторным (положенным в основу группировки) признаками. Численное значение коэффициента эмпирического корреляционного отношения имеет два знака: . При решении вопроса о том, с каким знаком его следует брать, необходимо иметь ввиду: если вариация факторного и результативного признаков идет синхронно в одном и том же направлении (возрастает или убывает), то корреляционные отношение берется со знаком плюс; если же изменение этих признаков идет в противоположных направлениях, то оно берется со знаком минус.
32. Сущность выборочного наблюдения и его теоретические основы.
Выборочное наблюдение относится к несплошному наблюдению. В основе этого наблюдения лежит идея о том, что отобранная в случайном порядке некоторая часть единиц может представлять всю изучаемую совокупность явления по интересующим признакам. Целью выборочного наблюдения является получение информации для определения сводных обобщающих характеристик всей изучаемой совокупности.
Выборочное наблюдение имеет ряд преимуществ перед сплошным.
1. Так как обследуется часть единиц совокупности, ошибок регистрации будет меньше, следовательно, информация будет более достоверной.
2. Выборочное наблюдение позволяет собрать более полную информацию за более сжатые сроки при меньших трудовых и денежных затратах.
3. При изучении некоторых явлений невозможно провести сплошное наблюдение.
Принципы теории выборочного метода:
1) Обеспечение случайности заключается в том, что при отборе каждой из единиц изучаемой совокупности обеспечивается равная возможность попасть в выборку.
2) Обеспечение достаточного числа отобранных единиц.
Понятие репрезентативности отобранной совокупности не означает ее полного представительства по всем признакам совокупности, так как это практически обеспечить невозможно. Отобранная из всей изучаемой совокупности часть должна быть репрезентативной в отношении тех признаков, которые изучаются или оказывают существенное влияние на формирование сводных показателей.
Генеральной совокупностью называется вся изучаемая совокупность единиц по интересующим признакам.
Выборочной совокупностью называется отобранная в случайном порядке из генеральной совокупности некоторая ее часть.
Характеристиками генеральной и выборочной совокупностей могут служить средние значения признаков, их дисперсия, среднеквадратическое отклонение, мода, медиана, характеристики альтернативного признака.
33. Виды и способы отбора единиц в выборочную совокупность.
По способу организации различают следующие виды выборочного наблюдения (выборку):
1) типическую (расслоенную). Перед отбором единицы генеральной совокупности предварительно разбивают на отдельные типические группы по признаку, существенному для явлений, подлежащих исследованию. При этом из каждой группы производится отбор пропорционально объема данной группы.
2) случайную. Сущность случайного отбора единиц совокупности заключается в том, что каждая единица наблюдения попадает в выборку совершенно случайно – по жребию.
В зависимости от способа отбора единиц различают:
- отбор по схеме возвращенного шара, который называют повторной выборкой. При повторном отборе вероятность попадания каждой отдельной единицы в выборку остается постоянной, так как после того, как какая-либо единица была отобрана, ее возвращают в совокупность и она снова может быть выбранной;
- отбор по схеме невозвращаемого шара, который называется бесповторной выборкой. В этом случае каждая отобранная единица не возвращается обратно.
3) механическую. Сущность механической выборки заключается в том, что все единицы генеральной совокупности располагаются в каком-либо порядке (возрастания или убывания, географическое положение), а затем чисто механически, через определенный интервал, отбираются единицы в выборочную совокупность.
4) серийную. Сущность серийного отбора заключается в том, что отбору подлежат не отдельные единицы генеральной совокупности, а целые серии таких единиц; в отобранных же сериях производится сплошное описание всех входящих в них единиц.
