Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
статистика шпоры стр).docx
Скачиваний:
5
Добавлен:
01.03.2025
Размер:
591.33 Кб
Скачать

28. Дисперсия, её математические свойства и методы расчета.

Дисперсия - средний квадрат отклонений индивидуальных значений признака от их средней величины.

Свойства дисперсии:

1. Дисперсия постоянной величины равна нулю.

2. Уменьшение всех значений признака на одну и ту же величину А не меняет величины дисперсии. Значит средний квадрат отклонений можно вычислить не по заданным значениям признака, а по отклонениям их от какого-то постоянного числа.

3. Уменьшение всех значений признака в k раз уменьшает дисперсию в k2 раз, а среднее квадратическое отклонение - к раз. Значит, все значения признака можно разделить на какое-то постоянное число (скажем, на величину интервала ряда), исчислить среднее квадратическое отклонение, а затем умножить его на постоянное число.

4. Если исчислить средний квадрат отклонений от любой величины А, то в той или иной степени отличающейся от средней арифметической (X~), то он всегда будет больше среднего квадрата отклонений, исчисленного от средней арифметической. Средний квадрат отклонений при этом будет больше на вполне определенную величину - на квадрат разности средней и этой условно взятой величины.

Дисперсия признака рассчитывается по формулам:

по первичным данным ; по вариационным рядам . Дисперсию можно определить и как разность между средним квадратом вариантов и квадратом их средней величины, т. е. .

В этом случае по первичным данным дисперсия равна: Применительно к сгруппированным данным, расчет дисперсии этим способом в развернутом виде представим в таком виде: .

Для рядов распределения с равными интервалами значение дисперсии можно вычислить, применяя способ условных моментов, т. е. , где - первый условный момент; - второй условный момент.

Преобразуя выражение расчета дисперсии по способу условных моментов, получим формулу вида:

29. Дисперсия альтернативного признака.

Наряду с вариацией количественных признаков может наблюдаться и вариация качественных признаков (в частности альтернативной изменчивости качественных признаков). В этом случае каждая единица изучаемой совокупности либо обладает каким-то свойством, либо нет (например, каждый взрослый человек либо работает, либо нет). Наличие признака у единиц совокупности обозначают 1, а отсутствие –0; долю же единиц совокупности, обладающих изучаемым признаком, обозначают p, а не обладающих им – q. Дисперсия альтернативного признака определяется по формуле:

; p + q = 1

Если, например, доля поступивших в университет равна 30%, а не поступивших – 70%, то дисперсия равна 0,21(0,3 · 0,7). максимальное значение произведения pq равно 0,25 (при условии, когда одна половина единиц обладает данным признаком, а другая половина нет: (0,5 · 0,5 = 0,25).

30. Виды дисперсии и правило сложения дисперсий.

Выделяют дисперсию общую, межгрупповую и внутригрупповую. Общая дисперсия измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию.

Межгрупповая дисперсия характеризует систематическую вариацию, т.е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора, положенного в основание группировки. ,

где - групповые средние,

- общая средняя для всей совокупности,

- численность отдельных групп.

Внутригрупповая дисперсия отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. ,

а по совокупности в целом – средняя из внутригрупповых дисперсий

.

Правило сложения дисперсий.

Существует закон, связывающий три вида дисперсии. Общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:

Данное соотношение называют правилом сложения дисперсий. Согласно этому правилу, общая дисперсия, возникающая под действием всех факторов, равна сумме дисперсии, возникающей за счет группировочного признака.

Зная любые два вида дисперсий, можно определить или проверить правильность расчета третьего вида.

Правило сложения дисперсий широко применяется при исчислении показателей тесноты связей, в дисперсионном анализе, при оценке точности типической выборки и в ряде других случаев.