
- •1. Предмет и задачи статистики.
- •2. Статистическая совокупность, её виды. Единицы совокупности и классификация их признаков.
- •3. Метод статистики и основные этапы статистического исследования.
- •4. Организация статистики в рб. Источники и способы получения статистической информации.
- •5. Виды статистического наблюдения. Способы собирания статистических сведений.
- •6. Программно-методологические вопросы плана статистического наблюдения.
- •7. Организационные вопросы плана статистического наблюдения.
- •8. Статистическая отчётность, принципы её организации, программа и виды.
- •9. Переписи и другие виды специально организованных статистических наблюдений.
- •10. Погрешности (ошибки) статистического наблюдения. Методы проверки достоверности статистических данных.
- •11. Сводка - вторая стадия статистического исследования. Её задачи, программа, план и техника.
- •12. Понятие о группировке, её задачи и виды.
- •14. Важнейшие группировки и классификации, применяемые в статистике.
- •13. Методологические вопросы построения группировок.
- •15. Ряды распределения, их виды и графическое изображение.
- •16. Статистические таблицы, их виды и основные правила построения и оформления.
- •17. Статистические показатели и их классификация.
- •18. Абсолютные статистические величины, их виды, значение и единицы измерения.
- •19. Относительные величины и область их применения. Способы их расчета и формы выражения.
- •20. Виды относительных величин.
- •21. Понятие о статистическом графике, его основные элементы и правила построения.
- •22. Виды статистических графиков и область их применения.
- •23. Сущность и значение средних величин. Основные научные положения теории средних. Определяющее свойство средней.
- •24. Средняя арифметическая, её основные математические свойства и методы расчета.
- •25. Средняя гармоническая и другие виды средних. Обусловленность выбора средней характером исходной информации.
- •26. Мода и медиана, их смысл и значение в социально-экономических исследованиях, способы вычисления.
- •27. Статистическое изучение вариации. Показатели вариации и методы их расчета.
- •28. Дисперсия, её математические свойства и методы расчета.
- •29. Дисперсия альтернативного признака.
- •30. Виды дисперсии и правило сложения дисперсий.
- •31. Коэффициент детерминации и эмпирическое корреляционное отношение как показатели тесноты связи между факторами в аналитической группировке.
- •32. Сущность выборочного наблюдения и его теоретические основы.
- •33. Виды и способы отбора единиц в выборочную совокупность.
- •34. Ошибки выборки и методы их расчета по среднему значению выборочного показателя и по доле признака выборочной совокупности.
- •35. Определение необходимой численности выборки.
- •36. Способы распространения результатов выборочного наблюдения на генеральную совокупность. Практика применения выборочных исследований в статистике.
- •37. Понятие о рядах динамики, их виды и правила построения.
- •38. Аналитические показатели динамического ряда, способы их расчета и взаимосвязь.
- •39. Средние показатели динамического ряда и методы их расчета.
- •40. Понятие тенденции ряда динамики и основные методы её выявления (укрупнение интервалов, способ скользящей средней.
- •41. Аналитическое выравнивание уровней ряда динамики. Уравнение тренда. Понятие о интерполяции и экстраполяции.
- •42. Сезонные колебания и методы их изучения.
- •43.Сущность индексов, задачи, решаемые индексным методом и классификация индексов.
- •44. Индивидуальные и общие (сводные) индексы. Принципы построения системы взаимосвязанных агрегатных индексов.
- •45. Средние индексы и их виды.
- •46. Индексный метод анализа динамики среднего уровня (индексы переменного, постоянного состава и структурных сдвигов).
- •47. Ряды индексов с постоянной и переменной базами сравнения, с постоянными и переменными весами, их взаимосвязь.
- •48. Взаимосвязи индексов.
- •49. Принципы построения многофакторных индексов.
- •50. Территориальные индексы.
- •51. Измерение связей между социально-экономическими явлениями – важнейшая задача статистики. Формы и виды взаимосвязей.
- •52. Статистические методы изучения связей: метод сравнения параллельных рядов, метод аналитических группировок, графический метод, балансовый метод.
- •53. Понятие линейной корреляции. Нахождение параметров уравнения регрессии, линейный коэффициент корреляции.
- •54. Понятие криволинейной зависимости, оценка тесноты связи при криволинейной зависимости.
- •55. Понятие о множественной корреляции.
25. Средняя гармоническая и другие виды средних. Обусловленность выбора средней характером исходной информации.
Средняя гармоническая является первообразной формой средней арифметической. Она рассчитывается в тех случаях, когда веса fi не заданы непосредственно, а входят как сомножитель в один из имеющихся показателей. Также как и арифметическая, средняя гармоническая может быть простой и взвешанной.
Средняя гармоническая. Если известны варианты значений осредняемого признака (х) и их суммарные (итоговые) результаты (M = xf), то в этом случае средняя рассчитывается по формуле средней гармонической взвешенной:
Если
вместо абсолютных значений (М), вычислить
их удельные веса, т.е.
;
,
то формула расчета средней примет вид:
,
или
,
если удельные веса (dM)
выражены в процентах.
При M – const средняя гармоническая взвешенная преобразуется в среднюю гармоническую простую:
Средняя квадратическая используется в том случае, когда необходимо возводить варианты в квадрат:
простая
,
взвешенная
.
Средняя квадратическая применяется в технике, для расчета среднего квадратического отклонения.
Средняя геометрическая
Средняя хронологическая:
простая
.
Она применяется в том случае, когда
интервалы времени между явлениями
равны.
взвешенная
.
Она применяется в том случае, когда
интервалы времени между явлениями
неравны.
26. Мода и медиана, их смысл и значение в социально-экономических исследованиях, способы вычисления.
Структурное среднее характеризует состав статистической совокупности по одному из варьирующих признаков. К этим средним относятся мода и медиана.
Мода - такое значение варьирующего признака, которое в данном ряду распределения имеет наибольшую частоту.
В дискретных рядах распределений мода определяется визуально. Сначала определяется наибольшая частота, а по ней модальное значение признака. В интервальных рядах для вычисления моды используется следующая формула:
Xmo - нижняя граница модальности (интервал ряда с наибольшей частотой)
Mo - величина интервала
fMo - частота модального интервала
fMo-1 - частота интервала предшествующего модальному
fMo+1 - частота интервала следующего за модальным
Медианой называется такое значение варьирующего признака, которое делит ряд распределения на две равные части по объему частот. Медиана рассчитывается по разному в дискретных и интервальных рядах.
1. Если ряд распределения дискретный и состоит из четного числа членов, то медиана определяется как средняя величина из двух серединных значений рангированного ряда признаков.
2. Если в дискретном ряду распределения нечетное число уровней, то медианой будет серединное значение рангированного ряда признаков.
В интервальных рядах медиана определяется по формуле:
-
нижняя граница медианного интервала
(интервала для которого накопленная
частота впервые превысит полусумму
частот)
Me - величина интервала
-
сумма частот ряда
-
сумма накопленных частот предшествующих
медианному интервалу
-
частота медианного интервала