
- •Вопрос 10-12
- •13. Конфигурация пк, определение производительности мп
- •Вопрос 53.
- •Вопрос 54.
- •2. Непозиционные системы счисления
- •Вопрос 55.
- •В цифровых устройствах
- •Вопрос 56.
- •В математике
- •[Править] в языках программирования
- •Пользовательские регистры
- •Регистры общего назначения
- •Сегментные регистры
- •Регистры состояния и управления
- •Системные регистры микропроцессора
- •Регистры управления
- •Регистры системных адресов
- •Регистры отладки
- •Вопрос 74
- •Вопрос 75.
- •Вопрос 76
- •Вопрос 77
- •78. Архитектура компьютерной системы
- •79. Режимы работы микропроцессора
- •80. Архитектура и вычислительных систем
Вопрос 54.
Непозиционная сисиема счисления.
2. Непозиционные системы счисления
Древнеегипетская десятичная непозиционная система счисления. Примерно в третьем тысячелетии до нашей эры древние египтяне придумали свою числовую систему, в которой для обозначения ключевых чисел 1, 10, 100 и т.д. использовались специальные значки — иероглифы.
Все остальные числа составлялись из этих ключевых при помощи операции сложения. Система счисления Древнего Египта является десятичной, но непозиционной.
! |
В непозиционных системах счисления количественный эквивалент каждой цифры не зависит от ее положения (места, позиции) в записи числа. |
Например, чтобы изобразить 3252 рисовали три цветка лотоса (три тысячи), два свернутых пальмовых листа (две сотни), пять дуг (пять десятков) и два шеста (две единицы). Величина числа не зависела от того, в каком порядке располагались составляющие его знаки: их можно было записывать сверху вниз, справа налево или вперемежку.
Римская система счисления. Примером непозиционной системы, которая сохранилась до наших дней, может служить система счисления, которая применялась более двух с половиной тысяч лет назад в Древнем Риме. В основе римской системы счисления лежали знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, X (две сложенные ладони) для 10, а для обозначения чисел 100, 500 и 1000 стали применять первые буквы соответствующих латинских слов (Сentum — сто, Demimille — половина тысячи, Мille — тысяча).
Вопрос 55.
Двоичная система и ее роль для ЭВМ
Двоичная система счисления — позиционная система счисления с основанием 2.
В этой системе счисления числа записываются с помощью двух символов (0 и 1).
В цифровых устройствах
Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и соответствует требованиям:
Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток (ток больше пороговой величины) — нет тока (ток меньше пороговой величины), индукция магнитного поля больше пороговой величины или нет (индукция магнитного поля меньше пороговой величины) и т. д.
Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину напряжения, тока или индукции магнитного поля, потребуется ввести два пороговых значения и два компаратора, что не будет способствовать помехоустойчивости и надёжности хранения информации.[источник не указан 750 дней]
Двоичная арифметика является довольно простой. Простыми являются таблицы сложения и умножения — основных действий над числами.
В цифровой электронике одному двоичному разряду в двоичной системе счисления соответствует (очевидно) один двоичный разряд двоичного регистра, то есть двоичный триггер с двумя состояниями (0,1).
Вопрос 56.
Шестнадцатеричная система и ее роль для ЭВМ
Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления по целочисленному основанию 16.
Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 1010 до 1510, то есть (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).
Широко используется в низкоуровневом программировании и компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами. Такое использование началось с системы IBM/360, где вся документация использовала шестнадцатеричную систему, в то время как в документации других компьютерных систем того времени (даже с 8-битными символами, как, например, PDP-11 или БЭСМ-6) использовали восьмеричную систему.
В стандарте Юникода номер символа принято записывать в шестнадцатеричном виде, используя не менее 4 цифр (при необходимости — с ведущими нулями).
Шестнадцатеричный цвет — запись трёх компонент цвета (R, G и B) в шестнадцатеричном виде