
- •1.Понятия о зданиях и сооружениях. Основные элементы зданий
- •2.Основные требования к зданиям и их конструкциям
- •3.Основы классификации зданий
- •4.Материалы для строительных конструкций
- •5.Задачи расчета конструкций
- •6.Конструктивная форма и ее расчетная схема
- •7.Основные положения расчета конструкций по предельным состояниям.
- •8.Нагрузки. (сНиП 2.01.07-85)
- •Постоянные и временные нагрузки. Сочетание нагрузок.
- •Сбор нагрузок
- •9.Нормативные и расчетные сопротивления материалов
- •10.Сущность расчета конструкций по предельным состояниям. Общие расчетные формулы. Предельное состояние первой группы.
- •Предельные состояния второй группы Расчет по деформациям
- •Расчет по местным разрушениям (для железобетонных элементов)
- •11.Особенности строительных конструкций из разных материалов
- •12.Области применения и общий подход к расчету конструкций из разных материалов
- •Основы расчета железобетонных конструкций, по предельным состояниям первой группы.
- •Конструкционные качества бетона и арматуры. Бетон
- •Нормативные и расчетные сопротивления бетона (сп 52-101-2003)
- •Арматура.
- •Изгибаемые железобетонные элементы. Общие сведения о конструкции изгибаемых элементов.
- •Конструирование плит.
- •Конструирование балок.
- •Выбор классов бетона и арматуры.
- •13.Стадии напряженно-деформированного состояния в элементе без предварительного напряжения.
- •Прочность сечения изгибаемого элемента, нормального к продольной оси.
- •Расчет прочности изгибаемых элементов прямоугольного сечения.
- •Прямоугольное сечение с одиночной арматурой
- •Прямоугольное сечение с двойной арматурой
- •Тавровые сечения
- •Двутавровые и коробчатые сечения.
- •Прочность сечения элемента наклонного к продольной оси.
- •Анкеровка продольной арматуры на опорах и обрыв арматурных стержней в пролете.
- •Сжатые элементы.
- •Напряженное состояние сжатых элементов. Этот раздел требует больше пояснений
- •Расчет сжатых элементов при случайных эксцентриситетах.
- •Предварительно-напряженные железобетонные конструкции.
- •Методы создания предварительного напряжения.
- •Способы натяжения арматуры.
- •Особенности расчета и конструирования предварительно напряженных железобетонных конструкций.
- •Напряжение в преднапрягаемой арматуре.
- •Потери напряжений в арматуре.
Основы расчета железобетонных конструкций, по предельным состояниям первой группы.
Сущность железобетона.
Железобетон – это комплексный материал, в котором соединяются бетон и стальная арматура.
Бетон хорошо сопротивляется сжимающим усилиям и во много раз (10-15 раз) хуже растягивающим, поэтому бетонные конструкции, в которых под нагрузкой возникает растяжение, имеют низкую несущую способность. Так бетонная балка разрушается при относительно малой относительно малой нагрузке вследствие образования трещин в растянутой зоне, тогда как прочность сжатой зоны не используется.
Железобетонная балка, снабженная в растянутой зоне стальной арматурой, обладает несущей способностью во много раз большей, т.к. после образования трещин в бетоне растянутой зоны, растягивающие усилия воспринимаются арматурой.
Стальная арматура хорошо сопротивляется не только растяжению, но и сжатию, поэтому арматуру рационально использовать и для усиления сжатого бетона. Примером такой конструкции является железобетонная колонна (рис. 5).
Широкому применению железобетона в строительстве способствуют такие его качества, как долговечность, огнестойкость, стойкость против атмосферных воздействий, высокая сопротивляемость статическим и динамическим нагрузкам, способность задерживать радиоактивные излучения, возможность использования местного сырья для приготовления бетона (песок, гравий, щебень), небольшие эксплуатационные расходы.
Вместе
с тем применение железобетона связано
с рядом осложнений, связанных с его
значительным весом, относительно высокой
звуко- и теплопроводностью, необходимостью
применения форм (опалубки) и выдерживания
в них конструкции до набора прочности,
низкой трещиностойкости.
Благодаря совершенствованию технологии изготовления, составов бетона, применению легких заполнителей бетонов, а также их поризации эти трудности удается преодолевать. Повышение трещиностойкости железобетонных конструкций достигается использованием предварительного напряжения их путем создания значительных сжимающих напряжений в частях конструкций, которые при эксплуатации испытывают растяжение. В предварительно напряженных конструкциях удается предотвращать образование трещин или снизить ширину их раскрытия.
Конструкционные качества бетона и арматуры. Бетон
По своей структуре бетон представляет собой неоднородное тело, в котором бессистемно расположены зерна заполнителей различной крупности и формы, скрепленные цементным камнем, поры и пустоты, заполненные воздухом и водой. Такая структура определяет его основные физико-механические свойства.
Прочность бетона. Классы бетона.
Отсутствие закономерности в расположении частиц затвердевшего бетона, а также в размещении и размерах пор приводит к тому, что при испытании образцов из одного и того же бетона наблюдается разброс показателей его прочности.
Прочность бетона с течением времени возрастает, при этом существенное влияние имеет изменение температуры и влажности среды, в которой происходит твердение (набор прочности бетона).
Различают несколько характеристик прочности бетона.
Кубиковая прочность (Rn, МПа) – временное сопротивление (предел прочности) на сжатие образца, имеющего форму куба.
Кубиковая прочность образца с размерами ребра 15 см, изготовленного и испытанного по стандарту, называется классом бетона по прочности на сжатие (В, МПа).
СНиП 52-01-2003 устанавливает следующие классы бетонов по прочности на сжатие (гарантированная прочность, МПа, с обеспеченностью 0,95) в целом в пределах от В0,5 до В120, а по СП 52-101-2003 для конструкций без предварительного напряжения В10; В15; В20; В25; В30; В35; В40; В45; В50; В55; В60.
Призменная прочность (Rb,n, МПа).
Образцы, имеющие
форму призм, при испытании на сжатие
показывают меньшую прочность, чем кубики
того же поперечного сечения, т.к. с
увеличением высоты образца снижается
влияние сил трения, возникающих по
опорным
поверхностям. При отношении высоты
призмы h
к стороне а
ее основания
>
4 трение практически не оказывает влияния
на временное сопротивление и оно
составляет 0,7 – 0,8 от кубиковой прочности.
Призменная прочность является основной прочностной характеристикой бетона при расчете конструкций, работающих на сжатие и изгиб. По ее значению установлены принятые в СНиП нормативные и расчетные сопротивления бетона на сжатие.
Прочность на растяжение.
Временное сопротивление бетона на растяжение (Rbt,n, МПа) устанавливается путем испытания на разрыв стандартных образцов в виде восьмерок.
Между величиной Rbt,n и кубиковой прочностью установлена эмпирическая зависимость:
|
(15) |
Для конструкций, работающих на растяжение дополнительно к классу бетона на сжатие (В) устанавливается класс бетона на растяжение (Bt, МПа).
СНиП предусматривает следующие классы бетона на растяжение в целом от Bt0,4 до Bt6, а по СП 52-101-2003 Bt0,8; Bt1,2; Bt1,6; Bt2,0; Bt2,4; Bt2,8; Bt3,2.
По прочности бетона на растяжение СНиП устанавливает нормативные и расчетные сопротивления, принимаемые при расчете конструкций по прочности на растяжение, а также по трещиностойкости.
Марки бетона.
Марка бетона по морозостойкости F соответствует минимальному числу циклов попеременного замораживания и оттаивания, выдерживаемых образцом при стандартных испытаниях, и принимается по СНиП от F15 до F1000.
Марка бетона по водонепроницаемости W соответствует максимальному значению давления воды (МПа·10-1), выдерживаемому образцом при испытании и принимается в пределах от W2 до W30.
Марка по средней плотности Д соответствует среднему значению объемной массы бетона в кг/м3 и принимается в пределах от Д200 до Д5000.
При необходимости устанавливают дополнительные качества бетона, обусловленные требованиями к конструкции.