
- •Осязательный органолептический анализ
- •Организация сенсорных исследований
- •Этапы и порядок проведения органолептического анализа
- •Методы сенсорного анализа
- •Тема №2 Оптические методы анализа
- •Рефрактометрический метод анализа
- •Поляриметрический метод анализа
- •Фотометрические методы анализа.
- •Закон Бугера-Ламберта-Бера
- •Фотонефелометрический анализ и турбодиметрия
- •Фотофлуроуметрический метод анализа.
- •Основы спектроскопии
- •Методы атомной спектроскопии
- •Атомно-абсорбционная спектроскопия
- •Атомизаторы
- •Монохроматор
- •Атомно-эмисионная спектроскопия
- •Качественный анализ
- •Количественный анализ
- •Практическое применение
- •Оптическая спектроскопия. Икс инфракрасная спектроскопия.
- •Источники излучения
- •Подготовка проб
- •Монохроматоры
- •Детекторы
- •Устройство ик спектрометра
- •Качественный анализ
- •Количественный анализ
- •Тема №4 Микроскопические методы анализа Оптическая микроскопия
- •Электронная микроскопия.
- •Сканирующая зондовая микроскопия (сзм).
- •Сканирующий туннельный микроскоп
- •Атомно-силовой микроскоп
- •Измерение характеристик проводящих материалов.
- •Двухзондовый метод
- •Четырёхзондовый метод.
- •Однозондовый метод
- •Бесконтактные методы
- •Измерение диэлектрических свойств
- •Измерение диэлектрических свойств жидкостей
- •Измерение диэлектрической проницаемости порошков
- •Измерение диэлектрических свойств твёрдых тел.
- •Термический анализ
- •Дифферинциальный термический анализ (дта)
- •Термогравиметрический анализ
- •Качественный и количественный термический анализ
- •Определение чистоты химических веществ методом дта
- •Химические сенсоры
- •Полупроводниковые сенсоры.
- •Сенсоры на основе мдп-структур
- •Тепловые сенсоры
- •Пироэлектрические сенсоры
- •Термокаталитические сенсоры
- •Массочувствительные сенсоры
- •Сенсор на основе твёрдых электролитов
- •Потенциометрические сенсоры
- •Потенциометрические сенсоры. Устанавливаемые на основе мдп, моп-структур
- •Амперометрические сенсоры
Определение чистоты химических веществ методом дта
Определение примесей в твёрдых телах основано на точном измерении температуры плавления, которая является характерной физико-химической константой и приводится в справочной литературе. Температура плавления ниже даже при незначительном количестве примесей (0.005%). На этом принципе основывается криоскопический метод определения чистоты. В криоскопических расчётах применяется уравнение Рауля и Вант-Гоффа.
X=100*(ΔHf/K*To2)*ΔT
X – мольная доля примеси в каждой фазе
Δt – понижение температуры плавления по отношению к чистому веществу в К.
ΔHf – теплота плавления чистого вещества, Дж/моль
К – универсальная газовая постоянная
Тo – температура плавления чистого вещества в К.
Плавление твёрдого вещества является фазовым переходом и сопровождается эндотермическим эффектом, потому легко регистрируется на кривой ДТА.
Применение уравнения ограничено следующими условиями:
1) основное вещество и примесь растворимы в жидком состоянии и совершенно не растворимы в твёрдом состоянии
2) Количество примесей должно быть менее 5%
3) твёрдая и жидкая фаза находятся в термодинамическом равновесии.
Химические сенсоры
Химические сенсоры – электронные приборы, предназначенные для контроля за содержанием в окружающей среде частиц того или иного вида.
Принцип действия основывается на эффекте преобразования величины сорбции определяемых частиц непосредственно в электрический сигнал, пропорциональный количеству частиц, сорбированных из окружающей среды.
Полупроводниковые сенсоры.
ПС являются одними из наиболее простых устройств, для газового анализа. Пс представляют собой плёночный резистор, изменяющий своё сопротивление при взаимодействии с детектируемым газом. В качестве чувствительных элементов таких сенсоров используют тонкие плёнки полупроводниковых материалов ( оксид олова, SnO2, In2O3, ZnO, WO3).
Сенсор представляет собой систему элементов, включающий абсорбционно чувствительный полупроводниковый слой 1, снабжённый электрическими контактами 2, сформированных на изоляционной подложке 3, т.к. температуры детектирования газов высоки от 50 до 700 подложку снабжают нагревательным элементом и средством контроля температуры 4 (плёночные терморезисторы).
Система растровых электродов на которые осаждается плёнка абсорбционно чувствительного материала позволяет снизить электрическое сопротивление чувствительного элемента. Сопротивление чувствительного элемента зависит от химической природы и количества абсорбированных из газовой фазы частиц.
На поверхности проводника n-типа при хемосорбции кислорода локализуется отрицательный заряд образованный захваченными электродами, что приводит к обеднению приповерхностного слоя. Когда сорбируется анализируемый газ, взаимодействующий с сорбированным кислородом проводимость приповерхностной области существенно возрастает, если газ обладает восстановительными свойствами и уменьшается если окислительными. Для полупроводников p-типа всё наоборот.
Скорость протекающих процессов и их обратимость зависит от температуры. Выходным сигналом таких сенсоров является относительная чувствительность, то есть относительное изменение сопротивления чувствительного элемента до и вовремя воздействия детекрируемого газа. Чем выше относительная чувствительность тем выше точность показаний и разрешающая способность сенсора. Поскольку газы различной природы приводят к однотипным изменениях в полупроводниках при абсорбционных взаимодействиях такие сенсоры обладают низкой селективностью.
Селективность сенсоров по отношению к различным газов добиваются путём выбора температурного диапазона детектирования, легированием материала чувствительного элемента каталитически активными добавками, которые могли бы активировать одну реакцию и ингибировать другие, вариация структурой поверхности совместным спеканием различных оксидов и т.д.