
- •Содержание
- •1.1. Сущность и составные части экономической информатики
- •1.2. Понятия, методы получения и свойства информации
- •1.3. Информация, данные и операции с ними
- •1.4. Особенности, классификация и требования к экономической информации
- •Классификация экономической информации
- •1.5. Экономические информационные системы, процессы и технологии
- •2.1. Кодирование данных
- •2.2. Кодирование текстовых данных
- •2.3. Кодирование графических данных
- •2.4. Кодирование звуковой информации
- •2.5. Файловая структура, единицы и способы измерения данных
- •3.1. Понятия о системах счисления
- •3.2. Правила перевода из одной системы счисления в другую
- •3.3. Арифметические операции в системах счисления
- •3.4. Представление чисел в компьютере
- •3.5. Вещественные числа
- •4.1. Логические выражения и логические операции
- •4.2. Логические законы и правила преобразования логических выражений
- •4.3. Базовые логические элементы
- •4.4. Сумматор двоичных чисел
- •4.5. Триггер
- •5.1. Принципы работы компьютера
- •5.2. Формат, структура и виды команд
- •5.3. Сущность архитектуры компьютера
- •5.4. Классификация архитектур компьютера
- •5.5. Интерфейсы компьютера
- •6.1. Общее устройство и основные блоки компьютера
- •6.2. Микропроцессор, его типы и структура
- •6.3. Системная шина
- •6.4. Запоминающие устройства
- •Распределение одномегабайтной области оп
- •6.5. Дополнительные и внешние устройства
- •7.1. Классификация эвм по принципу действия
- •7.2. Классификация эвм по этапам создания
- •7.3. Классификация эвм по назначению
- •7.4. Классификация эвм по размерам и функциональным возможностям
- •8.1. Понятия о компьютерных сетях
- •8.2. Классификация сетей
- •8.3. Топология сети
- •8.4. Передача данных
- •8.5. Звенья данных
- •8.6. Защита информации в компьютерных сетях
- •9.1. Структура и принципы построения сети Интернет
- •9.2. Способы доступа в Интернет
- •9.3. Адресация в сети Интернет
- •9.4. Электронная почта
- •9.5. Применение Интернета в экономике и бизнесе
- •10.1. Основные понятия и защита программных продуктов
- •10.2. Классификация программного обеспечения
- •10.3. Системное программное обеспечение
- •10.4. Прикладное программное обеспечение
- •10.5. Инструментарий технологии программирования
- •10.6. Операционная система и ее состав
- •1. Пункт 1 1.1. Пункт 2 1.1.1. Пункт 3 2. Пункт 4 3. Пункт 5
- •4 40026, Пенза, Красная, 40. Тел./факс: (8412) 56-47-33; е-mail: iic@pnzgu.Ru
2.3. Кодирование графических данных
Если рассмотреть с помощью увеличительного стекла черно-белое графическое изображение, то можно увидеть узор из мельчайших точек, называемый растром.
Общепринятым на сегодняшний день считается представление черно-белых иллюстраций в виде комбинации точек с 256 градациями серого цвета, и, таким образом, для кодирования яркости любой точки обычно достаточно восьмиразрядного двоичного числа.
Для кодирования цветных графических изображений применяется принцип декомпозиции произвольного цвета на основные составляющие. В качестве таких составляющих используют три основных цвета: красный (Red, R), зеленый (Green, G) и синий (Blue, В). Считается, что любой цвет, видимый человеческим глазом, можно получить путем механического смешения этих трех основных цветов. Такая система кодирования называется системой RGB.
Если для кодирования яркости каждой из основных составляющих использовать по 256 значений (восемь двоичных разрядов), как это принято для полутоновых черно-белых изображений, то на кодирование цвета одной точки надо затратить 24 разряда. При этом система кодирования обеспечивает однозначное определение 16,5 млн различных цветов. Режим представления цветной графики с использованием 24 двоичных разрядов называется полноцветным (True Color).
Принцип декомпозиции произвольного цвета на составляющие компоненты можно применять не только для основных цветов, но и для дополнительных, т.е. любой цвет можно представить в виде суммы голубой, пурпурной и желтой составляющей. Такой метод кодирования цвета принят в полиграфии, но в полиграфии используется еще и четвертая краска – черная (Black, К) (черный цвет обозначается буквой К, потому что буква В уже занята синим цветом), и для представления цветной графики в этой системе надо иметь 32 двоичных разряда (CMYK). Такой режим тоже называется полноцветным (True Color) (табл. 2).
Таблица 2
Режимы кодирования цвета
Глубина цвета |
Число отображаемых цветов (N) |
4 |
24 = 16 |
8 |
28 = 256 |
16 (High Color) |
216 = 65 536 |
24 (True Color) |
224 = 16 777 216 |
32 (True Color) |
232 = 4 294 967 296 |
2.4. Кодирование звуковой информации
Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека; чем больше частота сигнала, тем выше тон. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).
Непрерывная зависимость амплитуды сигнала от времени заменяется на дискретную последовательность уровней громкости.
Качество передаваемой информации при этом будет зависеть:
– от разрядности преобразования, т.е. числа двоичных разрядов, которые будут использованы при кодировании соответствующего уровня;
– частоты дискретизации – частоты, с которой аналоговый сигнал будет преобразован в цифровую форму с помощью одной из систем счисления.
Дискретизация – процесс разбиения сигнала на отдельные составляющие, взятые в определенные тактовые моменты времени через четко определенные тактовые интервалы времени [14].
Уровни громкости звука можно рассматривать как набор возможных состояний. Следовательно, чем большее число уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание. Звуковые карты обеспечивают, например, 16-битную глубину кодирования звука, обеспечивая 216 = 65 536 уровней сигнала.
Качество кодирования зависит еще и от числа точек измерения уровня сигнала за 1 с, т.е. частоты дискретизации (это значение изменяется от 8 000 до 48 000 кГц).
Можно оценить информационный объем стереоаудиофайла длительностью звучания 1 с при высоком качестве звука (16 бит, 48 кГц). Для этого число бит на одну выборку необходимо умножить на число выборок в 1 с и умножить на 2 (стереорежим):
16 бит 48 000 2 = 1 536 000 бит = 192 000 байт = 187,5 Кбайт.
Информационный объем звукового файла длительностью 1 мин приблизительно равен 11 Мбайт.