
- •§ 4. Смешанные задачи
- •§ 8. Смешанные задачи
- •Раздел I
- •Глава 1
- •§ 1. Абсолютная погрешность приближенного значения числа.
- •§2. Верные цифры числа. Запись приближенного значения числа. Округление приближенных значений чисел
- •§3. Относительная погрешность приближенного значения числа
- •Глава 2 действия над приближенными значениями чисел
- •§ 1. Сложение приближенных значений чисел
- •§2. Вычитание приближенных значений чисел
- •§3. Умножение приближенных значений чисел
- •§4. Деление приближенных значений чисел
- •§ 5. Возведение в степень приближенных значений чисел и извлечение из них корня
- •§6. Вычисления с наперед заданной точностью
- •§ 7. Решение прямоугольных треугольников с применением микрокалькулятора
- •§ 8. Решение косоугольных треугольников
- •§ 9. Смешанные задачи
- •Глава 3 системы уравнений и неравенств
- •§ 1. Решение линейных уравнений с одной переменной
- •§ 2. Решение линейных неравенств с одной переменной
- •§ 3. Системы и совокупности неравенств с одной переменной
- •§ 4. Неравенства с одной переменной, содержащие переменную под знаком модуля
- •30. Найти числовое значение выражения
- •§ 5. Решение систем двух линейных уравнений с двумя переменными
- •§ 7. Решение квадратных уравнений
- •§ 8. Свойства корней квадратного уравнения. Разложение квадратного трехчлена на множители
- •§ 9. Решение уравнений, приводимых к квадратным
- •§ 10. Задачи на составление квадратных уравнений
- •§ 11. Графическое решение квадратных неравенств
- •§ 12. Иррациональные уравнения
- •§ 13. Иррациональные неравенства с одной переменной
- •§ 14. Нелинейные системы уравнений и неравенств с двумя переменными
- •103. Дать геометрическую иллюстрацию решений систем:
- •105. Дайте геометрическую иллюстрацию решений следующих систем:
- •§ 15. Задачи на составление систем уравнений
- •§ 16. Простейшие задачи линейного программирования с двумя переменными
- •Глава 4 функция. Логарифмическая и показательная функции
- •§ 1. Функция. Область определения и множество значений функции
- •§ 2. Логарифмическая функция 1. Логарифмическая функция.
- •Постройте графики функций:
- •§ 3. Показательные уравнения
- •Способ уравнивания оснований
- •Решить уравнения:
- •Логарифмирование обеих частей уравнения. Применение основного логарифмического тождества
- •Преобразование к квадратному уравнению
- •Способ группировки
- •§ 4. Системы показательных уравнений
- •32. Решить системы уравнений:
- •§ 5. Показательные неравенства
- •§ 6. Логарифмические уравнения
- •§ 7. Системы логарифмических уравнений
- •§ 8. Логарифмические неравенства
- •§ 9. Смешанные задачи
- •Глава 5
- •§ 1. Бесконечная числовая последовательность
- •Даны последовательности:
- •§ 2. Предел числовой последовательности
- •Бесконечно малые и бесконечно большие последовательности. Последовательность называется бесконечно малой, если ее предел равен нулю.
- •Глава 6 предел функции
- •§ 1. Вычисление предела функции
- •§ 2. Число e. Натуральные логарифмы
- •Вычислить с помощью таблиц десятичных логарифмов: 1) е3;
- •§3. Смешанные задачи
- •§4. Приращение аргумента и приращение функции
- •§5. Непрерывность функции
- •§6. Точки разрыва функции
- •§7. Асимптоты
- •Найти асимптоты кривых:
- •§8. Решение дробно-рациональных неравенств методом промежутков
- •Глава 7 производная
- •§ 1. Скорость изменения функции
- •§2. Производная
- •§3. Основные правила дифференцирования. Производные степени и корня
- •§4. Производная сложной функции
- •§ 5. Физические приложения производной
- •Тело массой 10 кг движется прямолинейно по закону
- •Найдите ускорение точки в указанные моменты времени, если скорость точки, движущейся прямолинейно, задана уравнением:
- •§ 6. Производные логарифмических функций
- •§ 7. Производные показательных функций
- •§ 8. Смешанные задачи
- •Глава 8 приложения производной к исследованию функций
- •§ 1. Возрастание и убывание функции
- •§ 2. Исследование функции на экстремум с помощью первой производной
- •§ 3. Исследование функции на экстремум с помощью второй производной
- •§ 5. Задачи на нахождение наименьших и наибольших значений величин
- •В мально освещена у ее границы?
- •§ 6. Направление выпуклости графика функции
- •§ 7. Точки перегиба
- •§ 8. Построение графиков функций
- •Глава 9 тригонометрические функции
- •§ 1. Радианное измерение дуг и углов
- •Основные понятия, связанные с вращательным движением точки. При
- •Точка колеса, находящаяся от его центра на расстоянии 0,56 м, равномерно вращается с линейной скоростью 4,6 м/с. Найти период вращения колеса.
- •Линейная скорость на ободе равномерно вращающегося маховика, радиус которого 0,64 м, равна 256 м/с. Найти угловую скорость маховика.
- •§ 2. Единичная числовая окружность
- •§ 3. Тригонометрические функции числового аргумента
- •§ 4. Знаки, числовые значения и свойства четности и нечетности тригонометрических функций
- •Упростить:
- •Определите знаки выражений:
- •§ 5. Основные тригонометрические тождества
- •Упростите выражения:
- •Докажите тождества:
- •Упростите выражения:
- •Докажите тождества:
- •§ 6. Периодичность тригонометрических функций
- •§7. Обратные тригонометрические функции
- •§ 8. Построение дуги (угла) по данному значению тригонометрической функции
- •Записать главные дуги, синус которых равен: 1) 0; 2) — 1; 3) 1;
- •Записать главные дуги, косинус которых равен: 1) 0; 2) 1;
- •Записать главные дуги, котангенс которых равен: 1) у/3/3;
- •Запишите главные дуги, синус которых равен: 1) 1/2;
- •Запишите множество дуг, косинус которых равен: 1) —1/2;
- •§ 9. Тригонометрические уравнения
- •§ 10. Тригонометрические неравенства
- •§ 11. Свойство полупериода синуса и косинуса
- •§ 13. Смешанные задачи
- •Вычислите:
- •Упростите:
- •Докажите тождества:
- •§ 14. Тригонометрические функции алгебраической суммы двух аргументов (формулы сложения)
- •Доказать тождества:
- •Упростите:
- •Докажите тождества:
- •§ 15. Смешанные задачи
- •§ 17. Тригонометрические функции половинного аргумента
- •§ 18. Смешанные задачи
- •§ 19. Преобразование произведения тригонометрических функций в алгебраическую сумму
- •221. Представить в виде сумм первых степеней следующие тригонометрические функции: 1) sin2л:; 2) cos2*; 3) sin3х.
- •§ 20. Преобразование алгебраической суммы тригонометрических функций в произведение
- •Условия равенства одноименных тригонометрических функций. Для
- •§ 21. Преобразования с помощью вспомогательного
- •§ 22. Смешанные задачи
- •Преобразуйте в суммы тригонометрических функций первой степени следующие произведения:
- •Преобразуйте в произведение:
- •Решите уравнения:
- •§ 24. Производные тригонометрических функций
- •§ 25. Производные обратных тригонометрических
- •§ 26. Вторая производная и ее приложения
- •§ 27. Гармонические колебания
- •§ 28. Основные свойства тригонометрических функций
- •Найдите наибольшее и наименьшее значения функций:
- •§ 29. Построение графиков тригонометрических
- •Построить графики функций:
- •§ 30. Смешанные задачи
- •Глава 10 дифференциал функции. Приложение дифференциала к приближенным вычислениям
- •§ 1. Вычисление дифференциала функции
- •§ 2. Абсолютная и относительная погрешности
- •§ 3. Вычисление приближенного числового значения функции
- •§ 4. Формулы для приближённых вычислений
- •§ 5. Вычисления по способу строгого учета погрешностей
- •Найти относительную погрешность точности отсчета на логарифмической линейке со шкалой 250 мм.
- •§ 6. Смешанные задачи
- •Глава 11 неопределенный интеграл
- •§ 1. Основные формулы интегрирования. Непосредственное интегрирование
- •3) По формуле (11.13) находим
- •§ 2. Геометрические приложения неопределенного
- •§ 3. Физические приложения неопределенного интеграла
- •Найти закон движения свободно падающего тела при постоянном ускорении g, если в начальный момент движения тело находилось в покое.
- •Тело брошено вертикально вверх с начальной скоростью v0. Найдите закон движения этого тела (сопротивлением воздуха можно пренебречь).
- •§ 4. Интегрирование методом замены переменной
- •§ 5. Интегрирование по частям
- •Найти следующие интегралы:
- •§ 6. Интегрирование некоторых тригонометрических
- •§ 7. Смешанные задачи
- •Составьте уравнение кривой, проходящей через точку
- •Глава 12 определенный интеграл
- •§ 1. Определенный интеграл и его непосредственное вычисление
- •§ 2. Вычисление определенного интеграла методом замены переменной
- •§3. Интегрирование по частям в определенном интеграле
- •§ 4. Приближенное вычисление определенных интегралов
- •Глава 13 приложения определенного интеграла
- •§ 1. Применение определенного интеграла к вычислению различных величин.
- •§ 2. Вычисление пути, пройденного точкой
- •§3. Вычисление работы силы
- •§ 4. Вычисление работы, производимой при поднятии груза
- •Цилиндрический резервуар с радиусом основания 2 м и высотой 3 м заполнен водой. Вычислите работу, которую необходимо произвести, чтобы выкачать воду из резервуара.
- •§ 5. Вычисление силы давления жидкости
- •Вычислить силу давления воды на вертикальный прямоугольный шлюз с основанием 20 м и высотой 5 м (уровень воды совпадает с верхним обрезом шлюза).
- •§ 6. Длина дуги плоской кривой
- •Глава 14 комплексные числа
- •§ 1. Комплексные числа и их геометрическая интерпретация
- •§ 2. Действия над комплексными числами, заданными в алгебраической форме
- •Показать, что справедливы равенства
- •§ 3. Действия над комплексными числами, заданными в тригонометрической форме
- •Представить в тригонометрической форме следующие числа:
- •Извлечь корни из комплексных чисел 1) y/I; 2)
- •Найдите произведения:
- •Выполните умножение, используя тригонометрическую форму комплексного числа:
- •§ 4. Показательная функция с комплексным показателем. Формулы эйлера
- •§5. Смешанные задачи
- •Глава 15 дифференциальные уравнения
- •§ 1. Дифференциальные уравнения первого порядка с разделяющимися переменными
- •§2. Задачи на составление дифференциальных уравнений
- •Составить уравнение кривой, проходящей через точку м (2; —3) и имеющей касательную с угловым коэффициентом 4jc—3.
- •Составить уравнение кривой, проходящей через точку (1; 4), для которой отрезок касательной между точкой касания и осью абсцисс делится пополам в точке пересечения с осью Оу.
- •Температура воздуха равна 20°. Тело охлаждается за 40 мин от 80 до 30°. Какую температуру будет иметь тело через 30 мин после первоначального измерения?
- •§3. Линейные дифференциальные уравнения первого порядка
- •§4. Неполные дифференциальные уравнения второго порядка
- •Ускорение свободно падающего тела удовлетворяет уравне-
- •§5. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Найдите частные решения уравнений:
- •56. Решите уравнения:
- •§6. Смешанные задачи
- •Глава 16 элементы комбинаторики и теории вероятностей
- •§1. Элементы комбинаторики
- •Составить всевозможные перестановки из элементов: 1) 1; 2) 5, 6; 3) а, ь9 с.
- •6. Решить систему уравнений
- •§2. Случайные события. Вероятность события
- •§ 3. Теорема сложения вероятностей
- •Найти вероятность того, что наудачу взятое двузначное число окажется кратным либо 3, либо 5, либо тому и другому одновременно.
- •В ящике в случайном порядке положены 10 деталей, из которых 4 стандартных. Контролер взял наудачу 3 детали. Найдите вероятность того, что хотя бы одна из взятых деталей оказалась стандартной.
- •В урне находятся 10 белых, 15 черных, 20 синих и 25 красных шаров. Найдите вероятность того, что вынутый шар окажется:
- •Найдите вероятность того, что наудачу взятое двузначное число окажется кратным либо 4, либо 5, либо тому и другому одновременно.
- •§ 4. Теоремы умножения вероятностей
- •В одной урне находятся 4 белых и 8 черных шаров, в другой—3 белых и 9 черных. Из каждой урны вынули по шару. Найти вероятность того, что оба шара окажутся белыми.
- •В ящике находится 12 деталей, из которых 8 стандартных. Рабочий берет наудачу одну за другой две детали. Найти вероятность того, что обе детали окажутся стандартными.
- •В урне находятся 6 шаров, из которых 3 белых. Наудачу вынуты один за другим два шара. Вычислите вероятность того, что оба шара окажутся белыми.
- •В урне находятся 10 белых и 6 черных шаров. Найдите вероятность того, что три наудачу вьшутых один за другим шара окажутся черными.
- •§ 5. Формула полной вероятности. Формула байеса
- •В первом ящике имеются 8 белых и 6 черных шаров, а во втором—10 белых и 4 черных. Наугад выбирают ящик и шар. Известно, что вынутый шар—черный. Найти вероятность того, что был выбран первый ящик.
- •§ 6. Повторение испытаний. Формула бернулли
- •§ 7. Смешанные задачи
- •Глава 17 векторы на плоскости § 1. Основные понятия и определения
- •§ 2. Сложение и вычитание векторов.
- •Какому условию должны удовлетворять три вектора а, в и с, чтобы из них можно было образовать треугольник?
- •Точка м—середина стороны треугольника авс. Выразите см через векторы ав и вс.
- •Докажите, что средняя линия трапеции равна полусумме ее оснований.
- •§ 3. Прямоугольная система координат
- •Разложение вектора по координатным осям. Разложение вектора а в базисе (/, ]) имеет вид
- •Правила действий над векторами, заданными своими координатами.
- •Выразить через единичные векторы I и j следующие векторы:
- •Проверить, коллинеарны ли векторы ав и с/); если да, то сонаправлены ли они. Векторы соответственно заданы точками:
- •В каком случае проекция вектора на ось: 1) равна нулю; 2) равна по абсолютной величине длине данного вектора?
- •Векторы а и в симметричны относительно прямой /. Каким соотношением связаны между собой проекции этих векторов на ось п: 1) параллельную прямой /; 2) перпендикулярную прямой /?
- •Выразите через единичные векторы г и / векторы:
- •Даны точки: л(—2; —3), в(2; 4) и с(5; 1). Разложите векторы а в, вс и с а по единичным векторам I n_j.
- •Проверьте, коллинеарны ли векторы ав и cd; если да, то сонаправлены ли они. Векторы соответственно заданы точками:
- •§ 4. Длина вектора. Расстояние между двумя точками на плоскости. Углы, образуемые вектором с осями координат
- •Найти длину вектора ав, если а( 1; 1) и в(4; — 3).
- •Найти единичный вектор того же направления, что и вектор:
- •Даны тючки а[4; 0), 5(7; 4) и с ( — 4; 6). Найдите длины векторов: 1) ав; 2) 2?с; 3) с4.
- •Даны вершины треугольника а(хл; уА), в(хв; ув) и с(хс; ус). Найти точку пересечения медиан этого треугольника.
- •§ 6. Скалярное произведение двух векторов
- •Даны точки а ( — 2; 4), яд; -j3), с (4; —2) и /)(1; 5). Вычислите скалярное произведение ab cd.
- •§ 7. Преобразования прямоугольных координат
- •В системе, повернутой относительно исходной на угол 45°, дана точка ( — 2; 4). Найти координаты этой точки относительно исходной системы.
- •§ 8. Полярные координаты
- •§ 9. Смешанные задачи
- •Глава 18 прямая на плоскости и ее уравнения
- •§ 1. Общее уравнение прямой. Векторное и каноническое уравнения прямой
- •§ 1. Общее уравнение прямой. Уравнение первой степени относительно переменных х и у, т. Е. Уравнение вида
- •Прямая, параллельная оси Ох, проходит через точку (—2; 2). Составить уравнение этой прямой.
- •Составить уравнение прямой, проходящей через начало координат и точку м (2; 3).
- •§ 2. Уравнение прямой в отрезках на осях
- •Составить уравнение прямой, пересекающей ось Ох в точке (3; 0), а ось ординат—в точке (0; 5).
- •Составьте уравнение прямой в отрезках на осях, если она пересекает оси координат в точках: 1) а ( — 2; 0) и в (0; 3); 2) а (3; 0) и в (0; -4).
- •§ 3. Уравнение прямой с угловым коэффициентом
- •Составить уравнение прямой, проходящей через начало координат и образующей с осью Ох угол: 1) 0; 2) я/4; 3) 120°; 4) arctg (—3).
- •Составить уравнение прямой, проходящей через начало координат и через точку а (—2; 3).
- •Найти координаты точки а, если угловой коэффициент прямой, проходящей через начало координат и через точку а, равен 3/4 и точка а удалена от начала координат на 10 ед. Длины.
- •Составить уравнение прямой, проходящей через точку (3; 4) и отсекающей на оси Оу отрезок ь — 2.
- •Составить уравнение прямой, проходящей через точку (2; 6) и образующей с осью Ох угол arctg 5.
- •§ 4. Уравнение прямой, проходящей через данную точку в заданном направлении
- •§ 5. Уравнение прямой, проходящей через две данные точки
- •§ 6. Пересечение двух прямых
- •§ 7. Угол между двумя прямыми
- •Дан треугольник с вершинами а (—6; — 1), в (4; 6) и с (2; 1). Найти внутренние углы этого треугольника.
- •Найдите острый угол между двумя прямыми, если: 1) первая из них проходит через точки Аг (4; 2) и Bi (1; —7), а вторая—
- •Найдите внутренние углы треугольника, если его вершинами служат точки; 1) а ( — 6; —3), в (6; 7) и с (2; —1); 2) л (0; 4), я (4; -2) и с,(—4; -2).
- •Дан треугольник с вершинами а (6; 8), в (2; —4) и с (—6; 4). Найдите угол между стороной ав и медианой, проведенной из вершины а.
- •Две прямые, проходящие через начало координат, образуют между собой угол arctg (1/3). Отношение угловых коэффициентов этих прямых равно 2/7. Составьте уравнения этих прямых.
- •Две прямые, проходящие через начало координат, образуют между собой угол arctg (7/9). Отношение угловых коэффициентов этих прямых равно 9/2. Составьте уравнения этих прямых.
- •Треугольник задан вершинами а (—6; — 2), в (4; 8) и с (2; —10). Составьте уравнение биссектрисы угла а.
- •§ 8. Условие параллельности двух прямых
- •Составьте уравнение прямой: 1) проходящей через точку м(—3; —1) параллельно прямой (ав), где а(—2; 6) и I?(3; — 1);
- •§ 9. Условие перпендикулярности двух прямых
- •§ 10. Смешанные задачи
- •К прямой, проходящей через точки а(—4; 2) и в (8; 4), проведен перпендикуляр через точку, которая делит расстояние ав (от а к в) в отношении 3:4. Составьте уравнение перпендикуляра.
- •Две противоположные вершины квадрата находятся в точках а(— 1; 1) и с(5; 3). Составьте уравнения сторон и диагоналей этого квадрата.
- •Составьте уравнения катетов прямоугольного равнобед
- •§ 1. Множества точек на плоскости
- •1. Составить уравнение множества точек на плоскости, равноудаленных от точек а (2; 4) и в(4; 6).
- •Найти множество точек на плоскости, удаленных от начала координат на расстояние г.
- •§ 2. Окружность
- •Составить уравнение окружности с центром в точке (5; —7) и проходящей через точку (2; —3).
- •Составить уравнение окружности, проходящей через точки
- •Составить уравнение окружности, касающейся оси абсцисс в точке а (3; 0) и имеющей радиус, равный 6.
- •Составить уравнение окружности, касающейся оси ординат и проходящей через точки а(4; 5) и 2?(18; —9).
- •§ 3. Эллипс
- •Составить уравнение эллипса, если расстояние между фокусами равно 6 (фокусы лежат на оси Ох) и большая ось равна 10.
- •Составьте уравнение эллипса, фокусы которого находятся в точках (0; — у/з) и (0; у/з), а большая ось равна V?.
- •Составьте уравнение эллипса с фокусами на оси Ох, если он проходит через точки: 1) а (6; 4) и 2? (8; 3); 2) а (у/2; 2) и в (2; у/з).
- •§ 4. Гипербола
- •Составьте уравнение гиперболы с фокусами на оси Ох, если ее действительная ось равна 24, а мнимая ось равна 40.
- •Составьте уравнение гиперболы с фокусами на оси Ох, если длина ее действительной оси равна 12, а расстояние между фокусами равно 20.
- •Составьте уравнение равносторонней гиперболы с фокусами на оси Ох, если гипербола проходит через точку: 1) а( — 5; 4); 2) в{8; 2).
- •§ 5. Парабола с вершиной в начале координат
- •Составить уравнение параболы с вершиной в начале координат, если ее фокус находится в точке f(3; 0)
- •Составить уравнение параболы с вершиной в начале координат, симметричной относительно оси Оу и проходящей через точку а{4; 2).
- •Составьте уравнение параболы с вершиной в начале координат, если ее фокус находится в точке: 1) f(5; 0); 2) f(—4; о);
- •Составьте уравнение параболы с вершиной в начале координат, симметричной относительно оси Ох и проходящей через точку:
- •Составьте уравнение параболы с вершиной в начале координат, симметричной относительно оси Оу и проходящей через точку:
- •§ 6. Парабола со смещенной вершиной
- •Составить уравнение параболы, имеющей вершину а( 1; 2) и проходящей через точку м (4; 8), если ось симметрии параболы параллельна оси Ох.
- •Составьте уравнение параболы с осью симметрии, параллельной оси Ох, если парабола проходит через точку м и имеет вершину а: 1) м( 1; 3), а (-4; -2); 2) м(0; 0), а (-2; -4);
- •Составьте уравнение параболы с вершиной а и фокусом f:
- •Найдите координаты вершины параболы: 1)х2 —6х—67—
- •Составьте уравнение директрисы параболы: 1) 72 — 27—
- •§ 7. Касательная и нормаль к кривой
- •Составьте уравнение касательной и нормали к кривой:
- •§ 8. Смешанные задачи
- •Найдите точки пересечения двух парабол, имеющих общую вершину в начале координат, а фокусы—в точках Fl (3; 0) и
- •Глава 20 прямые и плоскости в пространстве
- •§ 1. Параллельность прямых и плоскостей
- •§2. Перпендикулярность в пространстве.
- •§3. Смешанные задачи
- •Глава 21 векторы в пространстве
- •§ 1. Основные понятия. Прямоугольная система координат в пространстве
- •Правила действий над векторами, заданными своими координатами.
- •Назовите три упорядоченные пары вершин тетраэдра abcd, задающие коллинеарные векторы, и по три упорядоченных пары, задающих компланарные и некомпланарные векторы.
- •Постройте точки: а(2; 3; 4); в( — 2; —3; —4); с( — 2; — 3; 4); d{2; -3; 4); е(-2; 3; 4); f(2; 3; -4); g(0; 0; 2); н(3,0; -4).
- •Постройте вектор ав, если: 1) а (2; —3; 4) и /?( — 3; 2; —5);
- •Зная координаты точек а (4; —3; 2) и 2?( — 2; 4; —3), лг(0; 5; 1)
- •Найдите периметр треугольника, образованного векторами ав, вс и са, если л (8; 0; 6), в(8; -4; 6), с(6; -2; 5).
- •Отрезок л б задан координатами своих концов а( 4; 2; —3) и в (6; —4; —1). Найдите координаты точки с, делящей этот отрезок пополам.
- •§ 2. Скалярное произведение векторов в пространстве
- •§ 3. Векторное произведение
- •Найти векторные произведения: 1) 7xj; 2) ух£; 3) £х/;
- •§ 4. Смешанные задачи
- •Глава 22 уравнения прямой и плоскости в пространстве
- •§ 1. Плоскость
- •Условия параллельности и перпендикулярности двух плоскостей. Дня
- •Составить уравнение плоскости, перпендикулярной оси Ох и проходящей через точку м0 (2; —1;3).
- •Составить уравнение плоскости, проходящей через ось Ох и точку м (3; 2; 4).
- •Составить уравнение плоскости, параллельной оси Oz и проходящей через точки Mi (3; —1; 2) и м2 (—2; 3; 4).
- •5. Составить уравнение плоскости, проходящей через точку м0 (2; —1; 3) и параллельной векторам а (3; 0; —1) и ь* (—3; 2; 2).
- •§ 2. Прямая в пространстве
- •Составить уравнения прямой, параллельной оси Ох и проходящей через точку м( 1; 1; 1).
- •Составить параметрические уравнения прямой, проходящей через начало координат и точку а (2; —3; —2).
- •Составить уравнения прямой, проходящей через точки а (1; —2; — 1) и в (3; 0; 4).
- •Составьте уравнения прямой, параллельной оси Oz и проходящей через точку м(2; — 1; 3).
- •Составьте параметрическое уравнение прямой, проходящей через начало координат и точку м (1; 4; —3).
- •Составьте уравнения прямой, проходящей через точки л(-2; -1; -3) и в (0; 2; 1).
- •§ 3. Плоскость и прямая
- •Составьте уравнение плоскости, проходящей через прямую
- •§ 4. Смешанные задачи
- •Составьте уравнения плоскости, проходящей через ось Oz и точку а (1; —2; 1).
- •Составьте уравнение плоскости, если точка м(2;—1;2) служит основанием перпендикуляра, опущенного на эту плоскость из начала координат.
- •Глава 23 многогранники и площади их поверхностей
- •§ 1. Призма
- •§ 2. Площадь поверхности призмы
- •§ 3. Пирамида. Усеченная пирамида
- •§ 4. Площадь поверхности пирамиды и усеченной пирамиды
- •§ 5. Смешанные задачи
- •Глава 24 фигуры вращения
- •§ 1. Цилиндр
- •§ 2. Конус. Усеченный конус
- •§ 3. Сфера, шар
- •§ 4. Вписанная и описанная сферы
- •Глава 25 объемы многогранников и фигур вращения
- •§ 1. Объем параллелепипеда и призмы
- •§ 3. Объем усеченной пирамиды
- •Стороны одного основания усеченной пирамиды равны 27, 29 и 52 см; периметр другого основания равен 72 см; высота пирамиды равна 10 см. Вычислите объем пирамиды.
- •§ 4. Исследования на экстремум в задачах на объемы многогранников
- •Из всех прямых параллелепипедов с данной площадью полной поверхности s и квадратным основанием найти тот, который имеет наибольший объем.
- •§ 5. Объёмы фигур вращения
- •§ 6. Исследования на экстремум в задачах на объемы фигур вращения
- •§ 7. Вычисление объемов фигур вращения с помощью определенного интеграла
- •§ 8. Смешанные задачи
- •Глава 26 площади поверхностей фигур вращения
- •§ 1. Площади боковой и полной поверхностей цилиндра
- •§ 2. Площади боковой и полной поверхностей конуса
- •§ 3. Площади боковой и полной поверхностей усеченного конуса
- •§ 4. Площадь поверхности сферы и ее частей
- •§ 5. Исследования на экстремум в задачах на площади поверхностей фигур вращения
- •§ 6. Вычисление площадей поверхностей фигур вращения с помощью определенного интеграла
- •§ 7. Смешанные задачи
- •Раздел IV
- •Глава 27 ряды
- •§ 1. Числовые ряды
- •§ 3. Знакопеременные и знакочередующиеся ряды. Абсолютная и условная сходимость. Признак сходимости лейбница для знакочередующихся рядов
- •§ 4. Вычисление суммы членов знакочередующегося ряда с заданной точностью и оценка остатка ряда
- •§ 5. Степенные ряды
- •§ 6. Разложение функций в степенные ряды
- •Разложить в ряд Маклорена функцию:
- •Разложите в ряд Маклорена функцию:
- •§ 7. Применение степенных рядов к приближенным вычислениям значений функций
- •§ 8. Вычисление определенных интегралов с помощью степенных рядов
- •41. Вычислить интеграл
- •Глава 28 ряды фурье
- •§ 2. Ряд фурье для нечетной функции
- •§3. Ряд фурье для четной функции
- •§5. Разложение в ряд фурье функции, заданной в произвольном промежутке
- •§6. Разложение в ряды фурье некоторых функций, часто встречающихся в электротехнике
- •21. Разложите в ряд Фурье функцию двухполупериодного выпрямленного синусоидального тока (рис. 194).
- •Глава 29 двойные интегралы
- •§ 1. Функции нескольких переменных
- •§2. Частные производные и полный дифференциал
- •Найти частные производные функции:
- •§3. Двойной интеграл и его вычисление
- •Основные свойства двойного интеграла. 1°. Двойной интеграл от алгебраической суммы функций равен алгебраической сумме двойных интегралов от слагаемых функций:
- •12 12 Вычислим сначала внутренний интеграл по переменной у, считая х постоянным:
- •§ 4. Двойной интеграл в полярных координатах
- •§ 5. Вычисление площади плоской фигуры
- •9 Область d запишем в виде системы неравенств
- •§ 6. Вычисление объема тела
- •Вычислите объемы тел, ограниченных заданными поверхностями:
- •Вычислите объемы тел, ограниченных заданными поверхностями (для вычисления интегралов используйте полярные координаты):
- •§ 7. Вычисление площади поверхности
- •Вычислите площади:
- •Вычислите площади (при вычислении интеграла используйте полярные координаты):
- •Вариант
- •§ 8. Вычисление массы плоской фигуры
- •Найдите массу треугольной пластинки, ограниченной прямы-
- •§ 9. Вычисление статических моментов плоской фигуры
- •Треугольника с вершинами о (0; 0), а (6; 0), в (0; 8);
- •§ 10. Координаты центра тяжести плоской фигуры
- •Найдите координаты центра тяжести треугольной пластинки,
- •§ 11. Вычисление моментов инерции плоской фигуры
- •Найти момент инерции однородного квадрата со стороной, равной 3, относительно одной из его вершин.
- •Вариант
- •Вариант
- •Найдите моменты инерции 1х,
- •Глава 1
- •Глава 2
- •0,3%. 17. 0,94; Верные цифры 9 и 4. 18. 2,51 ±0,005. 22. 0,4%. 23. 0,06%.
- •Глава 3
- •4. 1), 2) Да; 3) нет. 5. 1) 0; 2) 2/3; 3) 1/4; 4) нет решения. 6. 1) 10/19;
- •9 И 12 см. 80. 12 и 16 см. 81. 8 и 12 см. 82. 18 чел. 83. 6 и 12 дней. 84. 2 и
- •Глава 4
- •Глава 5
- •Последовательности 2), 4), 5), 6), 7) и 8).
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •56 М. 14. 1,08 м. 15. 4,59 рад. 16. 0,75 м. 17. 0,2 м. 18. Тс/2 с. 19. 3 м/с. 20. 6 рад/с; —2 рад/с2; через 5 с. 21. Тс/9, тс/3, 5тс/9. 22. Я/3, 4я/9, 5я/9, 2тс/3. 23.
- •7; 3) 1; 4) 0; 5) —1; 6) -1/2. 88. 1) 2Sin2a; 2) 3; 3) 2cosa; 4) 2. 92. Равенства
- •, 7), 8) Неверны. 93. 1) 0,4188; 2) 1,4836; 3) 0,1746; 4) 1,3963; 5) 0,2618; 6)
- •Глава 10
- •18,66; 5) 1,002. II вариант. 1) 0,12; 2) 0,2%; 3) 0,002; 4) 87,6; 5) 1,14.
- •(1/8)X—(1/32)sin4xH-c. 99. — (1/8)cos4x—(1/12)cos6xH-c. Зачетная работа. I вариант. 1) 2x3/2/34-6x5/6/54-ln |X|4-c; 2) arcsin(2x/3) —e"x4-c;'
- •Глава 12
- •Глава 13
- •160 Дж; 4) 19 614л: Дж; 5) 147 105 н. II вариант. 1) 54 м; 2) 250 Дж;
- •Глава 14
- •Глава 15
- •Глава 16
- •0,51. 64. 0,111. 65. 0,00833. 66. 0,54. 67. 0,107. 68. 0,979. 69. 0,117. 70. 0,242. Зачетная работа. I вариант. 2) 8; 3) 4; 4) 0,1; 5) 0,758. II вариант. 2) 3;
- •Глава 17
- •2. (11; 1). 3. В треугольник с вершинами (—5; 1), (1; 3), (2; —2). 5. 1) 7;
- •(0; 5). 88. 1) (-5; -5); 2) (1; -5); 3) (-5; -1); 4) (1; -1). 89. О (4; 4), Ot (—4; —4). 90. (3; —5). 91. Абсцисса и ордината точки поменяются
- •Глава 18
- •Глава 19
- •Глава 20
- •А2уп/16. 8. A2/2/4. 11. Три пары. 12. Aj3/3. 13. 48 см. 14. 12 см.
- •Аах. 13. Тройки векторов 2), 6), 7) компланарны; тройки векторов 1), 3),
- •Глава 22
- •Глава 23
- •Глава 24
- •27Ясм2. 91. 150 см2. 92. 24я см2. 93. 1) 2пг; 2) rtg(a/4). Зачетная работа.
- •Вариант. 1) 2л/(2 ctg (a/2)); 2) 144 см2. II вариант. 1) 4flf2tg2(a/2);
- •Глава 25
- •Ка3. Зачетная работа. I вариант. 1) 4,/3 см3; 2) ка3 sin2a/(6cosa);
- •Я/2 куб. Ед. II вариант. 1) 360 см2; 2) 2яя3 sin a cos2 (a/2); 3) 16я/15 куб. Ед.
- •Глава 26
- •2Sjcos2 (a/4). 68. 25/3. 69. 0,5 ctg2 (a/2)cos2 (a/2)cos-1 a. Зачетная работа.
- •Вариант. 1) 4v/2kScos(45° —a/2); 2) nl2/ cos2 a. II вариант. 1) 8тш2 cos2 (a/2); 2) 47i/2sin2atg2(45° — a/2).
- •Глава 27
- •Глава 28
- •Глава 29
- •§ 2. Необходимый признак сходимости ряда. Достаточные признаки сходимости рядов с положительными членами
- •§ 1. Тригонометрический ряд фурье
Записать главные дуги, котангенс которых равен: 1) у/3/3;
-1; 3)^/3; 4) -^3.
О 1) a=arcctg(N/3/3)=Tt/3; 2) а=я—arcctg 1 =п—я/4=Зк/4; 3) а= = arcctg у/3 = п/6; 4) а=п—arcctg у/з = п—п/6 = 5п/6. ф
Построить главные дуги arcctg 1 и arcctg(—1).
О Построение выполнено на рис. 47: АМ± = arcctg 1 = тс/4; АМ2 = п —
arcctg 1 = 7i—тг/4=Зтс/4. ф
Записать множество дуг, котангенс которых равен ч/з.
О На окружности имеются две точки, служащие концами дуг и а2, котангенс которых равен у/3: а! = arcctg у/3 = п/6 и a2 = arcctgN/34-7t = 7i/64-7i. Следовательно, искомое множество дуг выражается формулой
а=к/6 + кк (kеZ). ф
Запишите главные дуги, синус которых равен: 1) 1/2;
^2/2; 3) -У2/2; 4) -^3/2; 5) 3/4.
Запишите множество дуг, синус которых равен: 1) у/з/2;
-1/2; 3) 1; 4) -^2/2.
Постройте дуги, синус которых равен: 1) 1/3; 2) —2/3; 3) 0,6. Запишите множество дуг, соответствующих этим значениям синуса.
Запишите множество дуг, косинус которых равен: 1) —1/2;
Уз/2; 3) —^/2/2; 4) -^3/2.
Постройте дуги, косинус которых равен: 1) 4/5; 2) —4/5;
0,6. Запишите множество дуг, соответствующих этим значениям косинуса.
Запишите главные дуги, тангенс которых равен: 1) у/З/З;
2) -УЗ; 3) 1/2; 4) -0,7.
Запишите множество дуг, тангенс которых равен: 1) 0;
^3/3; 3) -1; 4) -у/3; 5) у/2.
Постройте дуги, тангенс которых равен: 1) —2/3; 2) 2;
—1,5. Запишите множество дуг, соответствующих этим значениям тангенса.
Запишите множество дуг, котангенс которых равен: 1) -УЗ/З; 2) -УЗ; 3)1; 4) 1/2.
Постройте дуги, котангенс которых равен: 1) —2; 2) 0,8;
—2/3. Запишите множество дуг, соответствующих этим значениям котангенса.
§ 9. Тригонометрические уравнения
Простейшими тригонометрическими уравнениями называются уравнения
sinx=m, cosx=m, tgx — m, ctgx=m,
где m—данное число.
Решить простейшее тригонометрическое уравнение—значит найти множество всех значений аргумента (дуг или углов), при которых данная тригонометрическая функция принимает заданное значение т.
Решить уравнения: 123. 1) $inx=m; 2) sinл:= 1 /2.
О 1) Если |/и|<1, то на единичной окружности имеются две дуги arcsin т и я—arcsin m, синус которых равен т и концы которых симметричны относительно оси OY (рис. 48).
Дуга
ai
—я/2
< arcsin
равен
т,
наз] ем уравнен» всех искомы: уравнению
s
бавлением
к любого цело!
ч
х-\
arcsin m+2nk, я—arcsin т + 2 nk,
\ arcsin m+2nk,
[—arcsin т + я(2/г+1).
Множество корней уравнения можно записать одной формулой (см. задачу 97):
jc=(— 1)"arcsinт + пп (иеZ).
В дальнейшем при записи ответа решения тригонометрического уравнения (или неравенства) будем считать, что параметры к, п, т могут принимать
любые
целые значения, но при этом ради краткости
записи не будем указывать, что fceZ,
«eZ, weZ.
Если \m\>\, то уравнение решений не имеет.
Частные случаи:
sin jc = — 1, х= —к/2 + 2кк, sinx=0, х=пк, sin jc = 1, х=п/2+2пк.
2) Главным решением является дуга АМ1=п/6 из промежутка
л/2 < я/6 < л/2, синус которой 1/2 (рис. 49). Множество корней уравнения имеет вид (— 1)"я/6+яи. #
1) cosх=т\ 2) cosa: =— 1/2.
О 1) Если |m|< 1, то на единичной окружности имеются две симметричные относительно оси ОХ дуги: АМХ= arccosт и АМ2 = — arccosт, косинус
которых равен т (рис. 50).
Дуга arccos т из промежутка 0 < arccos я, косинус которой равен т, называется главным решением уравнения cos х=т. Множество всех искомых дуг, удовлетворяющих уравнению cos х=т, находится прибавлением к найденным двум дугам любого целого числа периодов косинуса:
х=± arccos т+2 пк.
Если |т|>1, то уравнение решений не имеет.
Частные случаи:
cosx= — 1, х= ±п+2пк, или х=п(2к+1); cosx=0, х=п/2 + пк; cosx=\, х=2пк.
2) Главным решением является дуга АМ1 = п — п/3 = 2п/3 из промежутка
0^271/3^71, косинус которой равен —1/2 (рис. 51). Множество корней уравнения имеет вид ±2п/3 + 2пк. #
1) tgx=m; 2) tgx = x//3.
О 1) Дуга arctg т из промежутка — п/2 < arctg т< я/2, тангенс которой равен /и, называется главным решением уравнения tg х=т. Множество всех
искомых дуг, удовлетворяющих уравнению tg х—т, находится прибавлением любого целого числа периодов тангенса: x=arctg т + кк. Частный случай: tgjc=0, х=пк. 2) Главным решением является дуга я/3 из промежутка
я/2 < я/3 < я/2, тангенс которой равен у/з (рис. 52). Множество корней уравнения имеет вид п/З + пк. ф
1) ctgx=m; 2) ctg л: = — 1.
О 1) Дуга arcctgт из промежутка 0<arctgт<п, котангенс которой равен т, называется главным решением уравнения ctgx=m. Множество всех искомых дуг, удовлетворяющих уравнению ctg х=т, находится прибавлением любого целого числа периодов котангенса:
х=arcctg /И+пк.
Частный случай: ctgx=0, х=п/2+пк.
2) Главным решением является дуга АМ=п—п/4=Зп/4 из промежутка 0<3я/4<я, котангенс которой равен —1 (рис. 53). Множество корней уравнения имеет вид Зп/4+пк. ф
1) sin2х= 1/2; 2) tg(3x+2)= -1; 3) cos(cosjc)= 1/2.
О 1) 2х=(— \)кп/6+кк; множество корней уравнения имеет вид
I ) 12+ 2’
Зл:-|-2 = — п/4 + кк; Зх= — п/4—2 + пк; множество корней уравнения имеет вид
71
12
пк
"з+Т;
cosx= ±п/3 + 2пк; последнее уравнение не имеет корней, так как при любом feeZ его правая часть по абсолютной величине превосходит единицу, ф
1) sin2х = т; 2) cos2х=т (0<w^l).
—
1)
[х = пк + ( — х = пк—( —
О 1) sin^ х=то\
arcsm Jm.
[sin х=у/т,
<
sin;c= —у/т
В этой записи решения множитель (—1)*, регулирующий знак вторых ч нов, является лишним. Если для некоторого целого к перед arcsin у/т в первой формуле берется знак плюс, то для этого же к во второй—знак минус, и наоборот (в зависимости от четности или нечетности к). Поэтому обе формулы можно объединить в одну, более простую:
х=пп± arcsin у/т.
, Г cos х=у/т, Гх=2пк± arccos у/т,
2) cosх=то\ _о| о
Lcos х = — у/т \_х=2пк ±(тг—arccos у/т)
(:
х=п (2к ± l)4arccos у/т.
Объединив обе формулы, получим
х=пп± arccos у/т. %
1) tg2jc=т; 2) ctg2х—т (т>0).
_ 1 \ * 2 Г tg х=у/т, [x=nk+arctg у/т, г
О 1) tg лг=т о I ■о\ ох=пк± arctg у/т.
Ltg х = — у/т \_х=пк—arctg у/т
2) Аналогично находим х=пк± arcctg у/т. %
1) 2sin2x—7sinx+3 = 0; 2) 4cos2*+sinx— 1 =0; 3) tgxcosx+ + tg x—cos x — 1== 0; 4) tg3Ar = tgx.
О 1) Решаем это уравнение относительно sinx:
Г sin:c= 1/2, [х=(-1)кп/6 + пк, 2sin2jc-7smx+3=0o . o\ v '
|_sin;t=3 [нет решения.
Ответ: (—\)kn/6 + nk.
Имеем
/ ? ч . 9 Г sin jc = — 3/4,
4:
^х=(— 1 )к+1 arcsin (3/4) + пк,
_x=nj2 + 2nk.
Ответ: (— 1)*+1 arcsin (3/4)4- пк, п/2 + 2пк.
f(cosjc+l)(tgx-l)=0, J Ь
tgxcosjc4tgx—cosx—1 =0о< \ I tgлг= 1 о
{х*п12+кк I хФп/2+кк
\ ?A^}jX=*{2k+X^
Lx=Jt/4+irt oi хфп/2 + пк L x-m+nk.
Ответ: n (2k 41); n/4 + nk.
{хФп/2+кк j хфп/2 + пк
Г х = Я&,
~х
= пк,
-Zin+л"
1~±«/4+*.
1) sinx—cosx = 0; 2) sin2x—4sinxcosx+3cos2x = 0;
2sin2x+5sinxcosx+cos2x—4 = 0.
fsinx/cosx= 1, ftg лг= 1,
О 1) smjc—cosx=0o< <=>< tox=n 4+nk.
(cosjc^O [хФп/2 + пк
Решаем однородное уравнение:
С sin2* 4sinxcosjc 3cos2;t ^
sin2x—48шд:со8д:4-3со82л:=0о>
cosx^O
tg2*—4tgx+3=0, 1 Г^= > 1 х=я/4+^ .
<=>\ |_ tg л: = 3 <=> л x = 2LTCtg3 + nko
хфп/ +nk ^ хФк/2 + nk I хфк/2 + nk
[х=к/4+кк, л „
Ответ: я/4 + як, arctg 3 +як.
[jc=arctg 3 + я£.
Умножив свободный член на sin2*+cos2*, получим однородное уравнение:
sin2 л:+5 sin л; cos*+cos2 х—4 (sin2 *+cos2*)=0,
или
sin2 x—5 sin x cos x+3 cos2 x=0.
2tg2x—5tgx+3=0oT|®’,C
I’.yJ"*
|_tgx=3/2
|_л:
= а
с=я/4+я£,
=arctg (3/2)4-лА:.
Ответ: я/44-пк, arctg (3/2)4-пк. #
Решите уравнения:
1) sin х = >/2/2; 2) sinx = — y/l/2; 3) sinx= — ^/3/2; 4) sinx= = у/з/2; 5) sin*=4/5.
1) cosx=l/2; 2) cosx=—>/2/2; 3) cosx= — ^/3/2; 4)cosx= = >/3/2; 5) cos x = — 0,3.
1) tgx= — >/3/3; 2)tgx=l; 3) tgx= 1,327.
1) ctgx=l; 2)ctgx=—>/3; 3) ctgx = — у/З/З; 4)ctgx = 2,05.
1) sin(x/24-rc/6)= 1/4; 2) tg(3x4-1)= 1; 3) tg3x = >/3/3;
sin тех = ^/5/2; 5) cosx2 = 1.
1) sin2x=l/2; 2)sin2x=l; 3)sin2x=3/4; 4) sin2x = 0.
1) cos2x=l; 2) cos2x= 1/2; 3)cos2x=l/9; 4) cos2x=0.
1) tg2x=l; 2)ctg2x=3; 3)tg2x=l/3.
1) 2sin2x4-3cosx—3 = 0; 2) cos2x—cosx—2 = 0; 3) 5 ctg2x—
8ctgx4-3 = 0; 4) 3sin2x4-cos2x—2 = 0; 5) 7sin2x—5cos2x4-2 = 0;
tgx4-ctgx = 0; 7) sin2x—cos2 x=cosx.
1) cos2x=l; 2) tg(x—я/2)= 1; 3) tg(2x4-rc/2) = — 1;
tgx(sinx+cosx) = 0; 5) cosx(tgx—1) = 0; 6) tg(x/2)(l+cosx) = 0.
Рис.
54 Рис. 55
1) sin2x/cos.x:=0; 2) cos2*+sinx cos* —1=0; 3) sinx = 1/cos x;
tg3x + tg2x—3tgx—3 = 0; 5) 2sinx—3cosx = 0.
1) sin2x—10sinxcosx+21 cos2x=0; 2) 8sin2x-hsinxcosx+ +cos2x—4 = 0; 3) sin2x—6sinjtcosjt+5cos2x = 0; 4) 9sin2jt+25cos2jt+ + 32sinxcosx=25.