
- •1 Тепловое излучение. Испускательная и поглощательная способность. Абсолютно черное
- •2 Квантовые свойства света. Опыт Боте. Энергия, масса и импульс фотона. Фотоэффект. Эффект Комптона и его теория. Тормозное рентгеновское излучение. Давление света.
- •Достоинства теории Бора
- •[Править]Недостатки теории Бора
- •4 Длина волны де Бройля. Опытное обоснование волнового дуализма. Соотношение неопределенностей Гейзенберга.
- •6 Излучение и поглощение электромагнитной волны. Спонтанное и вынужденное излучение. Резонансное поглощение. Ширина спектральной линии. Коэффициенты Эйнштейна. Вывод формулы Планка по Эйнштейну.
- •7 Квантовое усиление и генерация света. Инверсное состояние вещества (методы осуществления инверсии населенностей). Лазеры. Рубиновый и гелий-неоновый лазер.
- •9 Элементарные частицы и античастицы. Виды взаимодействия частиц и их объединение в рамках единой теории. Кварки. Систематика элементарных частиц.
9 Элементарные частицы и античастицы. Виды взаимодействия частиц и их объединение в рамках единой теории. Кварки. Систематика элементарных частиц.
Частицы и античастицы
Первые гипотеза об античастице возникала в 1928 г. Электрон и позитрон не являются единственной парой частица — античастица. Выводы релятивистской квантовой теории привели к заключению, что для каждой элементарной частицы должна существовать античастица (принцип зарядового сопряжения). Эксперименты показывают, что за немногим исключением (например, фотона и 'Я -мезона), действительно, каждой частице соответствует античастица.
Из общих принципов квантовой теории следует, что частицы и античастицы должны иметь одинаковые массы, одинаковые времена жизни в вакууме, одинаковые по модулю, но противоположные по знаку электрические заряды , одинаковые спины и изотопические спины, а также одинаковые остальные квантовые числа, приписываемые элементарным частицам для описания закономерностей их взаимодействия . До 1956 г. считалось, что имеется полная симметрия между частицами и античастицами, т. е. если какой-то процесс идет между частицами, то должен существовать точно такой же (с теми же характеристиками) процесс между античастицами. Однако в 1956 г. доказано, что подобная симметрия характерна только для сильного и электромагнитного взаимодействий и нарушается для слабого. Античастицы были найдены также для л -мезона, каонов и гиперонов . Однако существуют частицы, которые античастиц не имеют,— это так называемые истинно нейтральные частицы. К ним относятся фотон, Л -мезон и η-мезон.
Элементарными частицами именуют большую группу мельчайших микрообъектов, не являющихся атомами или атомными ядрами (за исключением протона − ядра атома водорода). Пример античастиц: позитрон(античастица электрона). У частицы и античастицы массы, спины, времена жизни одинаковые, а прочие характеристики одинаковы по абсолютной величине, но противоположны по знаку.
Кварки
− это частицы, из которых, по современным
представлениям, построены крупные
частицы (адроны). К настоящему времени
достоверно установлено существование
пяти разновидностей кварков u,
c, d, s и b.
Все кварки имеют спин 1/2, барионный заряд
1/3 и обладают дробным электрическим
зарядом +2/3 или -1/3. Частицы, расположенные
в верхней части таблицы имеют заряд
+2/3, а в нижней − -1/3
.
Протон состоит из двух u-кварков
и одного d-кварка
(р→uud),
нейтрон состоит из одного u-кварка
и двух d-кварков
(n→ddu).
Виды взаимодействий
а). Электромагнитное взаимодействие.
Оно сводится к взаимодействию электрических зарядов (и магнитных моментов) частиц с электромагнитным полем
б). Гравитационное взаимодействие.
Оно доминирует в случае макроскопических масс. Но в мире элементарных частиц, ввиду малости их масс, это взаимодействие ничтожно.
в). Слабое взаимодействие. Слабое взаимодействие вызывает, например, β-распад радиоактивных ядер и, наряду с электромагнитными силами, объясняет поведение лептонов. Оно является короткодействующим, радиус действия порядка 10-16 см. Интенсивность слабого взаимодействия гораздо меньше интенсивности электромагнитного взаимодействия
г) Сильное (ядерное) взаимодействие. Сильное взаимодействие обеспечивает самую сильную связь элементарных частиц, в частности, связь между нуклонами в атомных ядрах. Оно присуще большинству элементарных частиц, так называемых адронов (протон, нейтрон, гипероны, мезоны и т.д.). Сильное взаимодействие - короткодействующее, радиус его действия порядка 10-13 см. Сильное взаимодействие не зависит от знака электрического заряда взаимодействующих частиц, т.е. обладает зарядовой независимостью.