
- •«Сети эвм и телекоммуникации»
- •Виды компьютерных сетей: wan, lan, man, pan. Их особенности.
- •Сетевые стандарты. Организации, занимающиеся стандартизацией сетевых технологий.
- •Топология сети. Виды топологий, их преимущества и недостатки.
- •Элементы сети: конечные устройства, промежуточные устройства, передающие среды.
- •Характеристики физического канала. Характеристики надежности сети.
- •Характеристики эффективности сети.
- •Назначение и функции модели osi.
- •Уровни модели osi, назначение, примеры протоколов.
- •Протокольная единица данных. Инкапсуляция. Мультиплексирование.
- •Стек протоколов. Стеки osi, ipx/spx, NetBios, tcp/ip.
- •Клиент-серверная и одноранговая сети.
- •Протокол Telnet.
- •Система доменных имен dns. Рекурсивная и нерекурсивная схемы. Кириллические домены.
- •Типы записей dns. Обратная зона. Url, fqdn.
- •Протокол dhcp.
- •Протокол http.
- •Система электронной почты. Протоколы.
- •Методы борьбы со спамом.
- •Транспортный уровень модели osi. Назначение, протоколы.
- •Сетевой порт. Виды портов.
- •Протокол udp. Назначение, формат пакета. Псевдозаголовок.
- •Протокол tcp. Назначение, формат пакета.
- •Логическое соединение. Установка и завершение логического соединения.
- •Квитирование. Метод простоя источника.
- •Метод скользящего окна.
- •Типы ip-адресов.
- •Формат адреса iPv4. Разграничение номеров сети и узла.
- •Классовая адресация.
- •Бесклассовая адресация. Маска сети, префикс.
- •Особые iPv4-адреса.
- •Технологии трансляции сетевых адресов.
- •IPv6. Преимущества перед iPv4, решаемые задачи.
- •Формат адреса iPv6. Типы адресов.
- •Форматы пакетов iPv4 и iPv6.
- •Маршрутизатор. Таблица маршрутизации.
- •Алгоритм маршрутизации.
- •Статическая и динамическая маршрутизация. Преимущества и недостатки.
- •Протокол icmp. Формат пакета.
- •Утилиты tracert (traceroute) и ping. Назначение, принципы работы.
- •Подуровни канального уровня, их задачи.
- •Адрес канального уровня. Адресные пространства.
- •42. Протокол разрешения адресов.
- •43. Разделяемая и неразделяемая среда. Полудуплексный и дуплексный режимы.
- •44. Вероятностный метод доступа к среде. Технологии csma/cd и csma/ca.
- •45. Детерминированный метод доступа к среде. Передача маркера.
- •46. Распределенный режим доступа dcf.
- •47. Режим централизованного доступа pcf (Point Coordination Function).
- •48. Характеристики линий связи: гармоника, спектральное разложение, затухание.
- •49. Характеристики линий связи: волновое сопротивление, помехоустойчивость, полоса пропускания, пропускная способность.
- •50. Представление дискретной информации в виде сигнала. Такт, несущая, бод.
- •51. Витая пара. Состав, типы.
- •52. Коаксиальный кабель. Состав, типы.
- •53. Волоконно-оптический кабель. Мода.
- •54. Модуляция. Виды модуляции.
- •55. Потенциальные коды nrz, ami, nrzi. Избыточный код 4b5b.
- •56. Самосинхронизирующиеся коды. Манчестерское кодирование. Скремблирование.
- •58. Процесс передачи данных. Коллизия.
- •59. Физическая среда технологии Ethernet.
- •60. Технология FastEthernet.
- •61. Технология Gigabit Ethernet.
- •62. Виды электромагнитных волн. Распространение.
- •63. Расширение спектра скачкообразной перестройкой частоты.
- •64. Прямое последовательное расширение спектра.
- •65. Физические уровни стандарта 802.11.
- •70. Неблокирующие режимы работы коммутаторов. Управление перегрузками.
- •71. Алгоритм покрывающего дерева. Быстрый алгоритм.
- •72. Агрегирование линий связи. Распределение кадров.
- •73. Виртуальные локальные сети. Способы организации. Транки.
- •74. Иерархическая модель сети. Уровни, их задачи.
Протокольная единица данных. Инкапсуляция. Мультиплексирование.
Протокольная единица данных (Protocol Data Unit, PDU) – это термин, используемый для обозначения единиц обмена данных, протоколами разных уровней.
Инкапсуляция – метод построения модульных сетевых протоколов, при котором логически независимые уровни сети абстрагируются от ниже лежащих механизмов, путем включения в более высокоуровневые объекты.
Мультиплексирование – означает, способность транспортного уровня одновременно обрабатывать несколько потоков данных.
Стек протоколов. Стеки osi, ipx/spx, NetBios, tcp/ip.
Стек протоколов - иерархически организованный набор сетевых протоколов, достаточный для организации взаимодействия узлов в сети.
Стек OSI:
Стек IPX/SPX:
Стек NetBIOS:
Стек TCP/IP:
Клиент-серверная и одноранговая сети.
Клиент-серверная сеть:
Клиент – модуль, предназначенный для формирования и передачи сообщений и запросов к ресурсам удаленного компьютера от разных приложений.
Сервер – модуль, который постоянно ожидает прихода запросов от клиента и пытается его обслужить.
Пара клиент-сервер предоставляющая доступ к конкретному типу ресурсов называется сетевой службой.
Концепция сети в которой основная часть ее ресурсов сосредоточена в серверах.
Одноранговые сети (пиринговые):
Сети, основанные на равноправии участников. Каждый компьютер является как клиентом, так и сервером.
Протокол Telnet.
Telnet (RFC 854)
Режим удаленного доступа, или Режим терминального доступа.
Протокол Telnet работает в архитектуре клиент-сервер, и обеспечивает эмуляцию алфавитно-цифрового терминала. Операционная система сервера рассматривает сеанс Telnet как один из сеансов локального пользователя.
Telnet – не защищен.
Система доменных имен dns. Рекурсивная и нерекурсивная схемы. Кириллические домены.
Система доменных имен DNS – распределенная база данных, способная по запросы, содержащему доменное имя хоста сообщить ip-адрес или какую-то другую информацию.
Рекурсивная и не рекурсивная схемы:
При НЕ рекурсивной схеме, клиент сам выполняет итеративно последовательность запросов к каждому серверу.
DNS-клиент обращается к корневому DNS-серверу с указанием полного доменного имени.
DNS-сервет отвечает клиенту, указывая адрес следующего DNS-сервера, обслуживающего домена верхнего уровня, заданный в следующей старшей части запрошенного имени.
DNS-клиент делает запрос следующего DNS-сервера, который отсылает его к DNS-серверу нужного поддомена и тд, пока не будет найден DNS-сервер, в котором хранится соответствие запрошенного имени IP-адресу. Этот сервер дает окончательный ответ клиенту.
При рекурсивной схеме, клиент поручает эту работу своему DNS серверу. Чтобы не выполнять по 10 раз опросы, идет кеширование на 10 дней.
DNS-клиент запрашивает локальный DNS-сервер, то есть тот сервер, обслуживающий поддомен, которому принадлежит имя клиента.
Далее возможны два варианта действий:
Если локальный DNS-сервер знает ответ, то он сразу возвращает его клиенту
Если локальный сервер не знает ответ, то он выполняет итеративные запросы к корневому серверу и тд точно так же, как это делал клиент в предыдущем варианте, а получив ответ, передает его клиенту, который все это время ждет его от своего локального DNS-сервера.
Кириллические домены:
Кириллические домены поддерживаются за счет использования Punycode, который был разработан для однозначного преобразования доменных имен, включающих Unicode символы, в последовательность ASCII-символов, так как в системе доменных имеет разрешены только 26 символов латинского алфавита.