
- •1 Медицинская радиология и лучевая диагностика: определение, состав (что входит), цели и задачи.
- •2 Лучевая диагностика в России и рб.
- •3 Открытие рентгеновского излучения: история, физические основы.
- •4. Принцип устройства рентгеновской трубки.
- •5 Открытие радиоактивности: история, физические основы.
- •6 Виды ионизирующего излучения и его взаимодействие с веществом.
- •7 Биологическое действие ионизирующего излучения.
- •8 Радиационная безопасность: принципы и методы.
- •9 Метод рентгенографии, скопи-, томографии и флюорографии и показание к их проведению.
- •10 Устройство современного кабинета для рентгенографии и рентгеновского аппарата
- •11 Метод кт. Устройство кт-томографа
- •12 Показания к применению кт.
- •13 Рентгеноанатомия и семиотика органов дыхания.
- •14 Что такое узи-исследование: физические принципы, положенные в его основу.
- •15 Частные узи-методики: Эхокардиография, доплерография
- •16 Принцип действия и устройства узи-аппарата.
- •17 Показания к применению узи-исследования.
- •18 Физические принципы положенные в основу мрт.
- •19 Устройство мрт-томографа и показания к применению.
- •20 Преимущества и недостатки кт и мрт-томографии.
- •21. Радионуклидные методы исследования: сканирование, сцинтиграфия. Эмисионно-
- •22. Показания для применения сцинтиграфии, эмисионно-позитронной томографии.
- •23 Принцип действия и устройства аппарат для сцинтиграфии и эмисионно- позитронной томографии.
- •24 Устройство современного кабинета для кт и кт-томографа.
- •25 Устройство современного кабинета для мрт и мрт-томографа.
- •26 Преимущества и недостатки узи в сравнение с кт и мрт-томографией.
5 Открытие радиоактивности: история, физические основы.
Французский физик А.Баккрель 1 марта 1896 года обнаружил по почернению фотопластинки испускание солью урана невидимых лучей сильной проникающей способности. Вскоре он выяснил, что свойством лучеиспускания обладает и сам уран. Затем такое свойство им было обнаружено и у тория.
В 1898 году другие французские ученые Мария Склодовская-Кюри и Пьер Кюри выделили из уранового минерала два новых вещества, радиоактивных в гораздо большей степени, чем уран и торий. Так были открыты два неизвестных ранее радиоактивных элемента - полоний и радий. Радиоактивность - такое название получило открытое явление. Радиоактивность — спонтанное изменение состава нестабильных атомных ядер путём испускания элементарных частиц или ядерных фрагментов.
Резерфорд
доказал, что радиоактивные лучи состоят
из лучей трёх различных
типов. Каждый из них получил
своё особое название и
обозначение. Их обозначили и назвали
тремя первыми буквами
греческого алфавита: альфа
(
),
бета (
)
и гамма
(
).
Альфа-лучами назвали те лучи, которые
магнитным полем отклоняются слабо и
представляют собой поток положительно
заряженных частиц. Бета-лучами стали
называть
те лучи, которые сравнительно
сильно отклоняются магнитным
полем и представляют
собой поток электронов. Гамма-лучами
стали называть лучи,
которые совсем не отклоняются магнитным
полем. Альфа-лучи
поглощаются наиболее сильно. Бета-лучи
поглощаются веществом значительно
слабее. Гамма-лучи
поглощаются во много раз слабее
бета-лучей.
6 Виды ионизирующего излучения и его взаимодействие с веществом.
Ионизирующее излучение (ИИ) – это излучение, взаимодействие которого со средой приводит к образованию в этой среде ионов разных знаков. Излучение считается ионизирующим, если оно способно разрывать химические связи молекул. Ионизирующее излучение делят на корпускулярное и фотонное.
Корпускулярное – это поток частиц с массой отличной от нуля (электроны, протоны, нейтроны, альфа-частицы).
Фотонное – это электромагнитное излучение, косвенно ионизирующее излучение (гамма излучение, характеристическое излучение, тормозное излучение, рентгеновское излучение, аннигиляционное излучение).
Наиболее значимы следующие типы ионизирующего излучения:
Коротковолновое электромагнитное излучение (поток фотонов высоких энергий):
рентгеновское излучение;
гамма-излучение.
Потоки частиц:
бета-частиц (электронов и позитронов);
альфа-частиц (ядер атома гелия-4);
нейтронов;
протонов, других ионов, мюонов и др.;
осколков деления (тяжёлых ионов, возникающих при делении ядер).
Основными видами ионизирующего излучения является электро-магнитное излучение (рентгеновское и гамма-излучение), а также потоки заряженных частиц – альфа-частицы и бета-частицы, которые возникают при ядерном взрыве.
Альфа излучение – поток положительно заряженных частиц, образованная 2 протонами и 2 нейтронами. Источником альфа-излучения являются радиоактивные элементы. В отличие от других видов ионизирующего излучения альфа-излучение является наиболее безобидным. Оно опасно лишь при попадании в организм такого вещества (вдыхание, съедание, выпивание, втирание и т.д.), так как пробег альфа частицы, например с энергией 5 МэВ, в воздухе составляет 3,7 см, а в биологической ткани 0,05 мм. Альфа-излучение попавшего в организм радионуклида наносит поистине кошмарные разрушения. Проникающая способность А.-и. невелика т.к. задерживается листом бумаги.
Бета-частица (β-частица), заряженная частица, испускаемая в результате бета-распада. Поток бета-частиц называется бета-лучи или бета-излучение.
Отрицательно заряженные бета-частицы являются электронами (β—), положительно заряженные — позитронами (β+). Скорость частиц в бета-лучах близка к скорости света. Бета-лучи способны ионизировать газы, вызывать химические реакции, люминесценцию, действовать на фотопластинки.
Значительные дозы внешнего бета-излучения могут вызвать лучевые ожоги кожи и привести к лучевой болезни. Ещё более опасно внутреннее облучение от бета-активных радионуклидов, попавших внутрь организма. Бета-излучение имеет значительно меньшую проникающую способность, чем гамма-излучение (однако на порядок большую, чем альфа-излучение).
Протонное изучение – это поток протонов, составляющих основу космического излучения, а также наблюдаемых при ядерных взрывах. Их пробег в воздухе и проникающая способность занимают промежуточное положение между альфа и бета-излучением.
Нейтронное излучение – образуется в процессе деления атомного ядра и обладает высокой проникающей способностью. Нейтроны можно остановить толстым бетонным, водяным или парафиновым барьером. К счастью, в мирной жизни нигде, кроме как непосредственно вблизи ядерных реакторов, нейтронное излучение практически не существует.
Гамма-излучение вид электромагнитного излучения с чрезвычайно маленькой длиной волны. Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер, при ядерных реакциях, а также при отклонении энергичных заряженных частиц в магнитных и электрических полях.
Гамма-лучи в отличие от α-лучей и β-лучей не отклоняются электрическими и магнитными полями и характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:
Фотоэффект (гамма-квант поглощается электроном атомной оболочки, передавая ему всю энергию и ионизируя атом).
Комптоновское рассеяние (гамма-квант рассеивается на электроне, передавая ему часть своей энергии).
Рождение электрон-позитронных
Фотоядерные процессы.
Облучение гамма-квантами, в зависимости от дозы и продолжительности, может вызвать хроническую и острую лучевую болезнь. Стохастические эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и тератогенным фактором.
Защитой от гамма-излучения может служить слой вещества. Эффективность защиты (то есть вероятность поглощения гамма-кванта при прохождении через неё) увеличивается при увеличении толщины слоя, плотности вещества и содержания в нём тяжёлых ядер (свинца, вольфрама, обеднённого урана и пр.).
Рентгеновское излучение – фотонное излучение (длина волны 10–-9–10–-12 м), состоящее из тормозного и (или) характеристического излучения, генерируемого рентгеновскими аппаратами, и возникающее при некоторых ядерных реакциях.
Результаты взаимодействия ионизирующего излучения с веществом зависят: от массы, заряда потока частиц и их энергий; от вида фотонов и их энергий; от типа и плотности вещества; от значения энергий внутримолекулярных сил облучаемого вещества.
Взаимодействие ионизирующего излучения с веществом зависит от соотношения масс и энергий частиц и может носить упругий или неупругий характер.
С учетом выше сказанного можно сделать некоторые выводы:
· заряженные частицы, проходящие через вещество, взаимодействуют как с орбитальными электронами атома, так и с его ядром;
· при взаимодействии с орбитальными электронами, энергия частиц растрачивается на ионизацию атомов, если она не менее 35 эВ и на возбуждение атомов (перевод электрона с ближней орбиты на более удаленную), если она менее 35 эВ;
· в процессе ионизации атома образуются заряженные частицы (свободные электроны), а атомы, потерявшие один или несколько электронов, превращаются в положительно заряженные ионы;
· при взаимодействии с ядром заряженная частица может или тормозиться электрическим полем ядра и менять свое направление движения или поглощаться ядром.
Взаимодействие альфа-частиц с веществом. Альфа-частицы проходя через вещество главным образом теряет свою энергию через ионизационное взаимодействие. Траектория движения альфа-частиц в веществе напоминает прямую линию.
Взаимодействие бета-лучей с веществом. Бета-лучи с маленькой энергией растрачивают энергию на тормозные потери. Бета-лучи с большим запасом энергии через тормозные потери траектория движения напоминает ломаную линию.Взаимодействие гамма-лучей с веществом. Выделяют 3 варианта взаимодействия: 1) фотоэффект – такой процесс взаимодействия гамма-лучей с веществом при котором вся энергия гама-луча передается одному из электронов встречного атома. 2) Комптоновский эффект - процесс при котором не вся энергия гамма-луча передается электрону встречного атома. После такого взаимодействия гамма-луч продолжает движение, но с меньшим запасом энергии. 3) Эффект образования электронно-позитронных пар. В этом случае гамма-лучи действуют не на электрон, а на ядро атома. В результате такого взаимодействия гамма-луч преобразовывается в пару частиц электрон+позитрон.