
- •Предисловие.
- •1. Основные задачи искусственного интеллекта.
- •1.1. История развития систем искусственного интеллекта.
- •1.2. Обзор основных направлений в области искусственного интеллекта
- •1.3. Решение задач и искусственный интеллект
- •1.3.1. Графовое представление задачи в пространстве состояний.
- •1.3.2. Стратегии поиска в пространстве состояний
- •2. Проблемная область искусственного интеллекта
- •2.1. Представление знаний
- •2.2 Модели представления знаний
- •2.2.1. Семантические сети
- •2.2.2. Фреймы
- •2.2.3. Формальные логические модели
- •2.2.4. Продукционная модель
- •2.2.5. Вывод на знаниях
- •3. Сильные методы решения задач. Экспертные системы
- •3.1. Структура экспертных систем
- •3.2. Классификация экспертных систем
- •3.3. Отличие эс от других программных продуктов
- •3.4. Цикл работы экспертных систем
- •3.5. Технология проектирования и разработки экспертных систем
- •4. Принятие решений в условиях неопределенности
- •4.1. Нечеткая логика
- •4.1.1. Нечеткие множества
- •4.1.2. Более строгое представление о нечетких множествах
- •4.1.3. Основные характеристики нечетких множеств
- •4.1.4. Примеры нечетких множеств и их характеристик
- •4.1.5. Операции над нечеткими множествами
- •4.1.6. Четкое множество α-уровня (или уровня α)
- •4.1.7. Нечеткая и лингвистическая переменные
- •4.1.8. Нечеткие числа
- •5. Машинное обучение на основе нейронных сетей
- •5.1. Биологический нейрон и его математическая модель
- •5.1.1. Биологический нейрон
- •5.1.2. Искусственный нейрон
- •5.2. Нейросети
- •5.2.1. Классификация и свойства нейросетей
- •5.2.2. Обучение искусственных нейронных сетей
- •5.3. Теорема Колмогорова
- •5.4. Персептрон
- •5.4.1. Алгоритм обучения персептрона
- •5.4.2. Линейная разделимость и персептронная представляемость
- •Логическая функция
- •Входы и выходы нейронов сети,
- •5.5. Сеть обратного распространения
- •5.5.1. Алгоритм обучения сети обратного распространения
- •5.6. Сеть встречного распространения
- •5.6.1. Сеть Кохонена. Классификация образов
- •5.6.2. Алгоритм обучения сети Кохонена
- •5. 6.3. Нейроны Гроссберга. Входные и выходные звезды
- •5.6.4. О бучение входной звезды
- •5.6.5. Обучение выходной звезды
- •5.6.6. Двухслойная сеть встречного распространения
- •5.6.7. Алгоритм обучения сети встречного распространения
- •5.7. Стохастические сети
- •5.7.1. Обучение Больцмана
- •5.7.2. Обучение Коши
- •5.8. Сети с обратными связями
- •5.8.1. Сеть Хопфилда
- •5.8.2. Правило обучения Хебба
- •5.8.3. Процедура ортогонализации образов
- •5.9. Сеть дап (двунаправленная ассоциативная память)
- •5.10. Сеть арт (адаптивная резонансная теория)
- •5.10.1. Алгоритм функционирования сети арт-1
- •Список иллюстраций
5.2. Нейросети
5.2.1. Классификация и свойства нейросетей
Однослойные искусственные нейронные сети. Хотя один нейрон и способен выполнять простейшие процедуры распознавания, сила нейронных вычислений проистекает от соединений нейронов в сетях. Простейшая сеть состоит из группы нейронов, образующих слой, как показано в правой части рис. 6.4.
Отметим,
что вершины-круги слева служат лишь
для распределения
входных сигналов. Они не выполняют
каких-либо вычислений, и поэтому
не будут считаться слоем. По этой причине
они обозначены кругами,
чтобы отличать их от вычисляющих
нейронов, обозначенных квадратами.
Каждый элемент из множества входов X
соединен
с каждым искусственным
нейроном отдельной связью, которой
приписан вес. А каждый
нейрон выдает взвешенную сумму входов
в сеть. В искусственных
и биологических сетях многие соединения
могут отсутствовать, на рисунке все
соединения показаны в целях общности.
Могут иметь место также
соединения между выходами и входами
элементов в слое. Удобно считать
веса элементами матрицы W.
Матрица имеет n
строк
и m
столбцов,
где n
—
число входов, а m
— число нейронов. Например,
- это вес
связи второго входа с третьим нейроном.
Таким образом, вычисление
выходного вектора Y,
компонентами
которого являются выходы
.
нейронов,
сводится к матричному умножению
Рис. 6.4. Простейшая однослойная нейронная сеть
Многослойные искусственные нейронные сети. Более крупные и сложные нейронные сети обладают, как правило, и большими вычислительными возможностями. Хотя в литературе иногда рассматриваются полносвязные нейронные сети (где каждый нейрон передает свой выходной сигнал остальным нейронам, включая самого себя), именно послойная организация нейронов (где каждый нейрон передает свой выходной сигнал только нейронам из соседнего слоя) копирует слоистые структуры определенных отделов мозга. Оказалось, что такие многослойные сети обладают большими возможностями, чем однослойные, и в последние годы были разработаны многообразные алгоритмы для их обучения.
Многослойные сети могут образовываться каскадами слоев. Выход одного слоя является входом для последующего слоя. Подобная сеть показана на рис. 6.5 и снова изображена со всеми соединениями.
Многослойные сети могут привести к увеличению вычислительной мощности по сравнению с однослойной сетью лишь в том случае, если активационная функция между слоями нелинейна. Вычисление выхода слоя заключается в умножении входного вектора на первую весовую матрицу с последующим умножением (если отсутствует нелинейная активационная функция) результирующего вектора на вторую весовую матрицу. Так как умножение матриц ассоциативно, то двухслойная линейная сеть эквивалентна одному слою с весовой матрицей, равной произведению двух весовых матриц. Следовательно, любая многослойная линейная сеть может быть заменена эквивалентной однослойной сетью.
Рис. 6.5. Пример многослойной нейронной сети