- •Вопрос 1. Прямая геодезическая задача (преобразование полярных координат в прямоугольные)
- •Вопрос 2. Обратная геодезическая задача (преобразование прямоугольных координат в полярные)
- •Вопрос 3. Использование вычислительной техники при решении геодезических задач
- •Калькулятор stf-169
- •Вопрос 4. Погрешности измерений, их виды
- •Вопрос 5. Оценка точности прямых равноточных измерений
- •Вопрос 6. Оценка точности функций измеренных величин
- •Вопрос 7. Понятие об уравнивании результатов геодезических измерений
- •Вопрос 8. Назначение, принцип построения, виды и классификация гос, закрепление пунктов гос
- •Вопрос 9. Методы построения плановых гос
- •Вопрос 10. Государственная плановая геодезическая сеть
- •Вопрос 11. Государственная нивелирная сеть
- •Вопрос 12. Геодезические сети сгущения
- •Вопрос 12. Построение геодезических опорных сетей с использованием спутниковых измерений, спутниковое нивелирование
- •Вопрос 14. Геодезические опорные сети специального назначения
- •Вопрос 15. Виды съемок, выбор масштаба и высоты сечения рельефа
- •Вопрос 16. Плановая съёмочная сеть, теодолитные ходы
- •Вопрос 17. Плановая привязка теодолитных ходов
- •Вопрос 18. Обработка материалов построения плановых съемочных сетей
- •Вопрос 19. Способы съемки ситуации, абрис
- •Вопрос 20. Горизонтальная съемка
- •Вопрос 21. Обработка материалов горизонтальной съемки
- •Вопрос 22. Методы топографической съемки, тахеометрическая съемка
- •Вопрос 23. Приборы для тахеометрической съемки
- •Вопрос 24. Планово-высотная основа тахеометрической съемки
- •Вопрос 25. Съемка ситуации и рельефа
- •Вопрос 26. Обработка материалов тахеометрической съемки
- •Вопрос 27. Нивелирование поверхности
- •Вопрос 28. Виды инженерных изысканий, задачи и состав инженерно-геодезических изысканий
- •Вопрос 29. Разбивка трассы на местности
- •Вопрос 30. Расчет и разбивка круговых кривых
- •Вопрос 31. Перенос пикетов с тангенса на кривую, учет домера
- •Вопрос 32. Нивелирование трассы и поперечников
- •Вопрос 33. Элементы проектирования плана и профиля дороги
- •Вопрос 34. Задачи и состав геодезических разбивочных работ
- •Вопрос 35. Геодезическая основа разбивочных работ
- •Вопрос 36. Исходная документация для выполнения разбивочных работ
- •Вопрос 37. Разбивочные оси сооружения
- •Вопрос 38. Подготовка данных для выноса проекта сооружения в натуру
- •Вопрос 39. Построение проектного горизонтального угла
- •Вопрос 40. Построение проектного расстояния
- •Вопрос 41. Способы горизонтальной разбивки сооружений
- •Вопрос 42. Геометрия кривой
- •Вертикальная разбивка сооружений
- •11.9. Исполнительные съемки
Вопрос 5. Оценка точности прямых равноточных измерений
Непосредственное сравнение измеряемой величины с единицей меры называется прямым измерением. Так измеряют линию рулеткой, угол теодолитом. Равноточными называют измерения, выполненные одинаково надежно, т.е. одинаковыми по точности приборами, одинаковыми по квалификации исполнителями, при одинаковых внешних условиях. Степень доверия к результату измерения называется весом. Таким образом, равноточные измерения – это измерения с одинаковым весом, неравноточные – измерения с неравными весами. Обработка неравноточных измерений в данном пособии не рассматривается.
Для оценки точности измерений пользуются двумя показателями: средней квадратической и предельной прогрешностями.
Мерой точности измерений служит дисперсия D(x) , т.е. рассеивание результатов. Это квадратичная величина:
при n
.
Корень квадратный из дисперсии называется стандартом (сигма), или стандартным отклонением:
.
Стандартное отклонение – это норматив, задаваемый в инструкциях. В практической деятельности число измерений n всегда ограничено. Поэтому для оценки точности отдельного измерения из ряда, содержащего n прямых равноточных измерений, пользуются приближением стандарта – средней квадратической погрешностью m .
В метрологии среднюю квадратическую погрешность называют средним квадратическим отклонением (СКО) и вычисляют по формуле Гаусса
, (3.2)
где определяют по формуле (3.1).
Если истинное значение X измеряемой величины l неизвестно, то вместо него используют среднее арифметическое как наиболее вероятное значение измеряемой величины, а СКО вычисляют по формуле Бесселя
, (3.3)
где v –
отклонение результата измерения l
от среднего арифметического
:
, (3.4)
. (3.5)
Среднюю квадратическую погрешность среднего арифметического находят по формуле
. (3.6)
На всех инженерных калькуляторах есть
клавиши с надписями
x , n,
для вычисления среднего арифметического
по формуле (3.5), клавиша
x2 для
нахождения числителя в формулах (3.2) и
(3.3), клавиши
n и
n-1 для
вычисления СКО по формулам (3.2),
(3.3).
Вторым показателем точности измерений служит предельная погреш-ность пред . Предельную погрешность находят по формуле
пред = tm . (3.7)
68% всех случайных погрешностей не превышают значение средней квадратической погрешности m , 95,5% не превышают 2m , а 99,7% укладываются в 3m (рис. 3.1). Поэтому в геодезических измерениях нормированный коэффициент t принимают равным 2 или 2,5 или 3 в зависимости от вида и назначения работ. В Строительных нормах и правилах (СНиП), Инструкциях и Наставлениях величина пред называется допуском. Погрешности, превышающие допуск, считают грубыми и измерения с такими погрешностями бракуют.
Зная допуск, можно по формуле m = пред / t предвычислить СКО, подобрать нужные приборы и методику измерений, которые дадут возмож-ность обеспечить заданную точность.
Значение СКО указывается в обозначении марки (шифре) прибора. Например, шифр Т30 означает теодолит, с помощью которого можно измерить угол со средней квадратической погрешностью, не превышающей 30"; шифр Н-5 означает нивелир, с помощью которого можно измерить превышение со средней квадратической погрешностью, не превышающей 5 мм на один километр двойного хода.
