
- •1)Ван-дер-ваальсово взаимодействие
- •3)Ковалентная связь
- •4) Сильная связь. Эн зоны в кристалле
- •5) Жидкие кристаллы.
- •6) Эффективная масса электрона в полупроводниках
- •7) Кристаллические и аморфные тв тела. Ближний и дальний порядки. Трансляционная симметрия.
- •8)Полупроводники.
- •9) Точечные группы симметрии. Решетки Браве
- •10)Полупроводники.
- •12)Примесные полупроводники
- •13)Точеные дефекты
- •14)Водородная связь
- •15) Дислокация
- •16)Магнитный резонанс.
- •17)Ионная связь
- •18) Сверхпроводники 1 и 2 родов
- •19)23) Пластичность. Хрупкое разрушение
- •20) Эффекты Джозефсона.
- •21) Теория теплоемкости решётки Дебая
- •23) Пластичность. Хрупкое разрушение
- •24)Ферромагнетизм, обменный интеграл
- •26) Свойства диэлектриков, электронная и ионная поляризация.
- •27) Теория теплоемкости Эйнштейна
- •28) Диэлектрики, ориентационная поляризация
- •31) Ферромагнетики. Магнитный гистерезис.
17)Ионная связь
Ионная связь – химическая связь, образованная электростатическим притяжением друг к другу разноименно заряженных ионов.
Так как ионная связь имеет электростатический характер, то любой простой ион (точечный заряд!) притягивает противоположно заряженные ионы по всем направлениям с одинаковой силой. Эта особенность ионной связи называется ненаправленностью. Из свойств электрических зарядов следует и вторая особенность ионной связи – ненасыщаемость. Смысл ненасыщаемости ионной связи в том, что каждый ион с одинаковой силой притягивает один, два, три, четыре и так далее ионов противоположного знака (если, конечно, они находятся на одинаковом от него расстоянии). Число таких ионов зависит только от их размера.
Постоянная Маделунга — величина, связывающая электростатический потенциал в ионных кристаллических решётках с параметрами кристаллической решётки. Названа в честь Эрвина Маделунга.
Энергию
электростатического взаимодействия
одного иона Ei в
ионном кристалле можно представить
как
где rij =|ri — rj| расстояния между ионами i и j,
zj — заряд иона j,
e — заряд электрона,
ε0 — электрическая постоянная.
Если
межионное расстояние отнормировать
на расстояние между ближайшими
соседями ro (которое
зависит от параметров кристаллической
решётка и типа структуры кристалла),
то получим
где M — постоянная Маделунга.
Для
кристаллической решётки типа NaCl с
зарядами ионов ±1 константа Маделунга
определяется как
Этот ряд (и подобные ряды для других типов кристаллов) сходится очень плохо и для его вычисления применяют специальные методы
18) Сверхпроводники 1 и 2 родов
Сверхпроводимость, свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Тк, характерной для данного материала. объясняется тем, что в более легких изотопах решетка «возмущается» с меньшими затратами энергии. Решетку из более тяжелых изотопов труднее деформировать, и поэтому переход к сверхпроводимости происходит при более низких температурах. Электроны проводимости в этих веществах легко проходят сквозь атомную решетку, почти не взаимодействуя с ней. Это делает такие материалы хорошими электрическими проводниками, поскольку в них теряется мало энергии из-за рассеяния решеткой. Для достижения же сверхпроводящего состояния необходимо сильное взаимодействие между атомами решетки и электронами. По этой причине очень хорошие проводники электричества, как правило, не бывают сверхпроводниками.
По своему поведению в магнитных полях сверхпроводники разделяются на сверхпроводники 1-го и 2-го рода. Сверхпроводники 1-го рода обнаруживают те идеальные свойства, о которых уже говорилось. В присутствии магнитного поля в поверхностном слое сверхпроводника возникают токи, которые полностью компенсируют внешнее поле в толще образца. При достижении критического поля сверхпроводимость исчезает и поле полностью проникает внутрь материала. Хотя у сверхпроводников 1-го рода малая глубина проникновения, они имеют большую длину когерентности – порядка 10–4 см.
Сверхпроводники 2-го рода характеризуются большой глубиной проникновения (около 2Ч10–5 см) и малой длиной когерентности (5Ч10–7см). В присутствии слабого магнитного поля (меньше 500 Гс) весь магнитный поток выталкивается из сверхпроводника 2-го рода. Но вышеНс1 – первого критического поля – магнитный поток проникает в образец, хотя и в меньшей степени, чем в нормальном состоянии. Это частичное проникновение сохраняется до второго критического поля – Нс2, которое может превышать 100 кГс. При полях, больших Нс2, поток проникает полностью, и вещество становится нормальным.