Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FKS ответы на билеты.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
190.74 Кб
Скачать

17)Ионная связь

Ионная связь – химическая связь, образованная электростатическим притяжением друг к другу разноименно заряженных ионов.

Так как ионная связь имеет электростатический характер, то любой простой ион (точечный заряд!) притягивает противоположно заряженные ионы по всем направлениям с одинаковой силой. Эта особенность ионной связи называется ненаправленностью.  Из свойств электрических зарядов следует и вторая особенность ионной связи – ненасыщаемость. Смысл ненасыщаемости ионной связи в том, что каждый ион с одинаковой силой притягивает один, два, три, четыре и так далее ионов противоположного знака (если, конечно, они находятся на одинаковом от него расстоянии). Число таких ионов зависит только от их размера.

Постоянная Маделунга — величина, связывающая электростатический потенциал в ионных кристаллических решётках с параметрами кристаллической решётки. Названа в честь Эрвина Маделунга.

Энергию электростатического взаимодействия одного иона Ei в ионном кристалле можно представить как

где rij =|ri — rj| расстояния между ионами i и j,

zj — заряд иона j,

e — заряд электрона,

ε0 — электрическая постоянная.

Если межионное расстояние отнормировать на расстояние между ближайшими соседями ro (которое зависит от параметров кристаллической решётка и типа структуры кристалла), то получим

где M — постоянная Маделунга.

Для кристаллической решётки типа NaCl с зарядами ионов ±1 константа Маделунга определяется как

Этот ряд (и подобные ряды для других типов кристаллов) сходится очень плохо и для его вычисления применяют специальные методы

18) Сверхпроводники 1 и 2 родов

Сверхпроводимость, свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Тк, характерной для данного материала. объясняется тем, что в более легких изотопах решетка «возмущается» с меньшими затратами энергии. Решетку из более тяжелых изотопов труднее деформировать, и поэтому переход к сверхпроводимости происходит при более низких температурах. Электроны проводимости в этих веществах легко проходят сквозь атомную решетку, почти не взаимодействуя с ней. Это делает такие материалы хорошими электрическими проводниками, поскольку в них теряется мало энергии из-за рассеяния решеткой. Для достижения же сверхпроводящего состояния необходимо сильное взаимодействие между атомами решетки и электронами. По этой причине очень хорошие проводники электричества, как правило, не бывают сверхпроводниками.

По своему поведению в магнитных полях сверхпроводники разделяются на сверхпроводники 1-го и 2-го рода. Сверхпроводники 1-го рода обнаруживают те идеальные свойства, о которых уже говорилось. В присутствии магнитного поля в поверхностном слое сверхпроводника возникают токи, которые полностью компенсируют внешнее поле в толще образца. При достижении критического поля сверхпроводимость исчезает и поле полностью проникает внутрь материала. Хотя у сверхпроводников 1-го рода малая глубина проникновения, они имеют большую длину когерентности – порядка 10–4 см.

Сверхпроводники 2-го рода характеризуются большой глубиной проникновения (около 2Ч10–5 см) и малой длиной когерентности (5Ч10–7см). В присутствии слабого магнитного поля (меньше 500 Гс) весь магнитный поток выталкивается из сверхпроводника 2-го рода. Но вышеНс1 – первого критического поля – магнитный поток проникает в образец, хотя и в меньшей степени, чем в нормальном состоянии. Это частичное проникновение сохраняется до второго критического поля – Нс2, которое может превышать 100 кГс. При полях, больших Нс2, поток проникает полностью, и вещество становится нормальным.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]