
- •1)Ван-дер-ваальсово взаимодействие
- •3)Ковалентная связь
- •4) Сильная связь. Эн зоны в кристалле
- •5) Жидкие кристаллы.
- •6) Эффективная масса электрона в полупроводниках
- •7) Кристаллические и аморфные тв тела. Ближний и дальний порядки. Трансляционная симметрия.
- •8)Полупроводники.
- •9) Точечные группы симметрии. Решетки Браве
- •10)Полупроводники.
- •12)Примесные полупроводники
- •13)Точеные дефекты
- •14)Водородная связь
- •15) Дислокация
- •16)Магнитный резонанс.
- •17)Ионная связь
- •18) Сверхпроводники 1 и 2 родов
- •19)23) Пластичность. Хрупкое разрушение
- •20) Эффекты Джозефсона.
- •21) Теория теплоемкости решётки Дебая
- •23) Пластичность. Хрупкое разрушение
- •24)Ферромагнетизм, обменный интеграл
- •26) Свойства диэлектриков, электронная и ионная поляризация.
- •27) Теория теплоемкости Эйнштейна
- •28) Диэлектрики, ориентационная поляризация
- •31) Ферромагнетики. Магнитный гистерезис.
10)Полупроводники.
Проводимость полупроводников занимает промежуточное значение между типичными диэлектриками и металлами.
- диэлектрики - σ ~ 10-16 Ом-1·м-1;
- полупроводники - σ ~ (10-4-105) Ом-1·м-1;
- металлы - σ ~ (106-108) Ом-1·м-1.
Важным отличием полупроводников от металлов является xaрактер температурной зависимости проводимости: если для типичных металлов проводимость обратно пропорциональна температуре (при не слишком низких значениях температуры), то у беспримесных полупроводников проводимость растет с ростом температуры по экспоненциальному закону.
Закон действующих масс:
(3.21)
где ni - концентрация собственных носителей заряда в полупроводнике, Eg= Ec - Ev - ширина запрещенной зоны. Соотношение (3.21) называется законом действующих масс. При выводе этого закона использовано предположение о том, что степень заполнения энергетических уровней носителями заряда много меньше единицы. Такой газ носителей называется невырожденным, а полупроводники - невырожденными.
В общем случае вырожденным газом в физике называется газ, свойства которого отличаются от свойств классического идеального газа вследствие квантово-механических свойств частиц газа. Вырожденный газ подчиняется квантово-механическим статистикам Ферми-Дирака или Бозе-Эйнштейна, невырожденный газ - статистике Маквелла-Больцмана. Условием перехода газа в невырожденное состояние является выполнение неравенства f(E) << 1. Можно показать, что это условие для электронного газа эквивалентно следующему соотношению:
(3.22)
Аналогичное
соотношение справедливо и для дырок с
заменой n на p и
на
.
Вопрос о том, является газ носителей заряда в кристалле вырожденным или невырожденным определяется только его концентрацией и температурой.
Таким образом, закон действующих масс выполняется для любого невырожденного полупроводника независимо от роли примесей, т.е. в любом невырожденном полупроводнике увеличение концентрации носителей одного знака приводит к уменьшению концентрации носителей противоположного знака. Следует отметить также, что произведение электронной и дырочной концентраций не зависит от положения уровня Ферми.
11)ДИФРАКЦИОННЫЕ МЕТОДЫ исследования структуры вещества, основаны на изучении углового распределения интенсивности рассеяния исследуемым веществом излучения - рентгеновского (в т. ч. синхротронного), потока электронов или нейтронов и мёссбауэровского g-излучения. Соотв. различают рентгенографию. электронографию. нейтронографию и мёссбауэрографию
Рентгенострукту́рный ана́лиз (рентгенодифракционный анализ) — один из дифракционных методов исследования структуры вещества. В основе данного метода лежит явление дифракции рентгеновских лучей на трехмерной кристаллической решётке.
Метод позволяет определять атомную структуру вещества, включающую в себя пространственную группу элементарной ячейки, её размеры и форму, а также определить группу симметрии кристалла.
ЭЛЕКТРОНОГРАФИЯ, метод исследования атомной структуры вещества, главным образом кристаллов. основанный на дифракции электронов Дифракционная картина - электронограмма - возникает в результате прохождения начального монохроматич. пучка электронов через образец и представляет собой совокупность упорядочение расположенных дифракц. пятен - рефлексов (рис. 1), которые определяются расположением атомов в исследуемом объекте. Электронографически можно проводить фазовый анализ вещества (в этом случае совокупность значений Ihkl и dhkl сравнивают с имеющимися банками данных), можно изучать фазовые переходы в образцах и устанавливать геом. соотношения между возникающими фазами, исследовать полиморфизм и политипию.
НЕЙТРОНОГРАФИЯ (от нейтрон и «граф» — пишу) — дифракционный метод изучения атомной и/или магнитной структуры кристаллов, аморфных материалов и жидкостей с помощью рассеяния нейтронов. Для получения дифракционных спектров используются тепловые нейтроны, получаемые в ядерных реакторах. Так как характерные межатомные расстояния в твердых и жидких телах составляют порядка 1 Å, дифракция возможна, если используемые нейтроны имеют энергию порядка 0,06 эВ, что соответствует длине волны излучения порядка 1 Å.
Исследуемый объект облучается пучком нейтронов, который рассеивается на атомах вещества. Для регистрации рассеяния используются нейтронные спектрометры, при помощи которых измеряется интенсивность рассеяния нейтронов в зависимости от угла дифракции, аналогично рентгеновской дифрактометрии. По полученным дифракционным спектрам восстанавливается атомная структура исследуемого объекта.
УСЛОВИЕ БРЭГГА-ВУЛЬФА.Когда рентгеновский луч падает на кристалл, каждый атом становится центром испускания вторичной волны Гюйгенса (см. Принцип Гюйгенса). Сам кристалл можно разбить на набор параллельных плоскостей, определяемых атомной структурой решетки (условно говоря, первая плоскость определяется направлением от атома к двум его ближайшим соседям, вторая — направлением от атома к двум следующим соседям по кристаллической решетке и так далее). Вторичные дифракционные волны в общем случае взаимно усиливаться не будут, за исключением тех случаев, когда они попадают в точку наблюдения (на экран или приемник) со сдвигом по фазе, равным целому числу длин волн. Это условие, определяющее пики интенсивности дифракционной картины, можно записать следующим образом:
2d sin θ = nλ
где d — расстояние между параллельными плоскостями кристаллической решетки, θ — угол рассеяния рентгеновских лучей, λ — длина волны рентгеновских лучей, а n — целое число (порядок дифракции). При n = 1 мы наблюдаем пик взаимного усиления волн дифракции на атомах, удаленных друг от друга на одну длину волну, при n = 2 — второй пик дифракции (разность хода составляет две длины волны) и т. д.
Это условие, известное теперь как закон Брэгга, говорит нам, что при данных длинах волн рентгеновское излучение усиливается под определенными углами рассеяния, и по этим углам отклонения мы можем рассчитать расстояние между плоскостями кристаллической решетки. Каждой из таких плоскостей будет соответствовать пик яркости рентгеновских лучей на дифракционной картине при соблюдении условия Брэгга.
Поэтому при облучении кристалла сфокусированным рентгеновским лучом на выходе мы получаем рассеянный в результате дифракции луч с выраженными пиками яркости. По углам отклонения пиков яркости от направления исходного луча ученые сегодня с большой точностью рассчитывают расстояния между атомами кристаллической решетки.