
- •1)Ван-дер-ваальсово взаимодействие
- •3)Ковалентная связь
- •4) Сильная связь. Эн зоны в кристалле
- •5) Жидкие кристаллы.
- •6) Эффективная масса электрона в полупроводниках
- •7) Кристаллические и аморфные тв тела. Ближний и дальний порядки. Трансляционная симметрия.
- •8)Полупроводники.
- •9) Точечные группы симметрии. Решетки Браве
- •10)Полупроводники.
- •12)Примесные полупроводники
- •13)Точеные дефекты
- •14)Водородная связь
- •15) Дислокация
- •16)Магнитный резонанс.
- •17)Ионная связь
- •18) Сверхпроводники 1 и 2 родов
- •19)23) Пластичность. Хрупкое разрушение
- •20) Эффекты Джозефсона.
- •21) Теория теплоемкости решётки Дебая
- •23) Пластичность. Хрупкое разрушение
- •24)Ферромагнетизм, обменный интеграл
- •26) Свойства диэлектриков, электронная и ионная поляризация.
- •27) Теория теплоемкости Эйнштейна
- •28) Диэлектрики, ориентационная поляризация
- •31) Ферромагнетики. Магнитный гистерезис.
26) Свойства диэлектриков, электронная и ионная поляризация.
Диэлектрики – вещества, обладающие малой электропроводностью, т.к. у них очень мало свободных заряженных частиц – электронов и ионов. Эти частицы появляются в диэлектриках только при нагреве до высоких температур. Существуют диэлектрики газообразные (газы, воздух), жидкие (масла, жидкие органические вещества) и твердые (парафин, полиэтилен, слюда, керамика и т.п.).
Электроизоляционные материалы в большей или меньшей степени
гигроскопичны, т.е. обладают способностью впитывать в себя влагу из
окружающей среды, и влагопроницаемы, т.е. способны пропускать сквозь себя
пары воды.К важнейшим свойствам диэлектриков относятся нагревостойкость,
холодостойкость, теплопроводность и тепловое расширение.
Эти процессы определяют свойства диэлектриков, а, следовательно, надежность их работы в радиоустройствах, поэтому рассмотрим эти процессы.
Электронная поляризация
При подаче напряжения в диэлектрике создается электрическое поле, и электроны в атомах смещаются относительно ядра к положительному электроду.
Смещенные электроны с положительными зарядами ядер атомов образуют пары связанных друг с другом электрических зарядов, которые называются упругими диполями. Образование их происходит мгновенно (10-15 с). Они исчезают, если с диэлектрика снято напряжение. Этот процесс образования упругих диполей называется электронной поляризацией.
Величина e зависит от концентрации атомов (молекул) в диэлектрике и их структуры, определяющей поляризуемость αэ атома (молекулы), и описывается выражением:
e = 1 + nαэ,
где ε – диэлектрическая проницаемость; n – концентрация частиц (атомов, молекул) в диэлектрике; αэ – электронная поляризуемость, определяемая структурой молекулы или атома.
Если диэлектрик кристалл, то у него ε больше, чем у аморфного диэлектрика, т.к. плотность упаковки атомов и молекул больше в кристаллическом состоянии.
Диэлектрическая проницаемость вещества с чисто электронной поляризацией численно равна квадрату показателя преломления света n.
ε = n2.
Хотя деформация электронных орбит не зависит от температуры, электронная поляризация, а, следовательно, диэлектрическая проницаемость ε с увеличением температуры диэлектрика уменьшается, т.к. увеличивается его объем и уменьшается число частиц в единице объема.
Ионная поляризация (или поляризация ионного смещения).
Поляризация обусловлена смещением упруго связанных ионов. Характерна для твердых тел с ионным строением, т.е. для кристаллических диэлектриков. Всякий ионный кристалл состоит из положительных и отрицательных ионов, расположенных в узлах кристаллической решетки. При наложении напряжения в нем начинают действовать электрические силы, и ионы смещаются: положительные – в одном направлении, отрицательные – в противоположном. Каждая пара ионов образует упругий диполь.
27) Теория теплоемкости Эйнштейна
Квантовая теория теплоёмкостей Эйнштейна была создана Эйнштейном в 1907 году при попытке объяснить экспериментально наблюдаемую зависимость теплоёмкости от температуры.
При разработке теории Эйнштейн опирался на следующие предположения:
Атомы в кристаллической решетке ведут себя как гармонические осцилляторы, не взаимодействующие друг с другом.
Частота колебаний всех осцилляторов одинакова.
Число
осцилляторов в 1 моле вещества
равно
,
где
— число
Авогадро.
Энергия их
квантована:
,
Число
осцилляторов с различной энергией
определяется распределением
Больцмана:
.
Внутренняя
энергия 1 моля вещества:
.
находится
из соотношения для среднего значения:
и составляет:
,
отсюда:
.
Определяя
теплоёмкость как производную внутренней
энергии по
температуре, получаем окончательную
формулу для теплоёмкости:
.