
- •3) Вариационные ряды, их элементы.
- •4. Построение инт.Вар.Рядов
- •5) Понятие, формы выражения и виды статитстических показателей.
- •7. Средние величины и показатели вариации
- •8) Средняя арифметическая и её сво-йства.
- •9) Cтепенные средние q-го порядка.
- •10) Структурные (позиционные) сред-ние.
- •11. Показатели вариации
- •12. Дисперсия. Основные свойства.
- •13. Основные этапы статистического исследования
- •14. Понятие статистического наблюдения
- •15. Методологические вопросы организации стат. Наблюдения.
- •16. Формы, виды, способы стат. Наблюдения
- •17) Понятие выборочного наблюдения.
- •18) Способы формирования выборочной совокупности.
- •19) Определение ошибок выборки.
- •20) Определение объёма выборки.
- •21) Распространение результатов вы-борочного наблюдения на генеральную совокупность.
- •26) Статистические графики. Класси-фикация графиков.
- •41) Основные понятия и предпосылки применения корреляционно-регрессион-ного анализа.
- •44) Непараметрические показатели связи.
- •22. Задачи сводки и ее содержание
- •23. Метод группировки и его место в системе статистических методов
- •24.Виды статистических группировок
- •27. Понятие и классификация рядов дин-ки .
- •29. Смыкание рядов дин-ки
- •40. Основные понятия корреляционно-регрессионного анализа.
- •43. Измерение степени тесноты кор. Связи.
- •25. Понятие о стат-ой табле. Элементы стат-ой табл
- •42. Парная корреляция и множественная корреляция.
- •45. Множественная корреляция
- •53. Задачи статистики рынка труда.
7. Средние величины и показатели вариации
Большое распространение в статистике имеют средние величины. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.
Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития.
Средняя величина - это обобщающие показатели, в которых находят выражение действия общих условий, закономерностей изучаемого явления.
Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в кооперативах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.
При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения.
Например, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т.д.
Средняя выработка отражает общее свойство всей совокупности.
Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак.
Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков, в целом необходимо располагать системой средних величин, которые могут описать явление с разных сторон.
Существуют различные средние:
• средняя арифметическая;
• средняя геометрическая;
• средняя гармоническая;
• средняя квадратическая;
• средняя хронологическая.
8) Средняя арифметическая и её сво-йства.
Средняя арифметическая простая (взве-шенная). Эта форма средней использует-ся в тех случаях, когда расчёт осуществ-ляется по несгруппированным данным.
Предположим, семь членов бригады име-ют следующий стаж работы:
№ рабочего: 1 2 3 4 5 6 7
Стаж работы 10 3 5 12 11 7 9
Для того чтобы определить средний стаж работы, необходимо воспользоваться следующим соотношением:
ИСС=совокупный стаж работы/число рабочих
Запишем формулу данной средней:
Х=хi/n.
Средняя арифметическая взвешенная. При расчёте средних величин отдельные значения осредняемого признака могут повторяться, встречаться по нескольку раз. В подобных случаях расчёт средней производится по сгруппированным данным или вариационным рядам, которые могут быть дискретными или интервальными.
Х=(хi*fi/fi).
Свойства средней арифметической.
1. Произведение средней на сумму частот равно сумме произведений отдельных вариантов на соответствующие им частоты: хfi = xi*fi
2. Сумма отклонений индивидуальных значений признака от средней арифметической равна нулю:
(xi-x)*fi=0.
3. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем сумма квадратов их отклонений от любой другой произвольной величины С:
(xi-C)2*fi=(xi-x+x-C)2*fi=…= (xi-x)2*fi+2*(x-C)*0+(x-C)2*fi.
Следовательно, сумма квадратов отклонений индивидуальных значений признака от произвольной величины С больше суммы квадратов их отклонений от своей средней на величину:(x-C)2*fi.
4. Если все осредняемые варианты уменьшить или увеличить на постоянное число А, то средняя арифметическая соответственно уменьшится или увеличится на ту же величину:
(xi+-A)*fi/fi = x+-A.
5. Если все варианты значений признака уменьшить или увеличить в А раз, то средняя также соответственно увеличиться или уменьшится в А раз:
(xi/A)*fi / fi = 1 / A*x.
6. Если все веса уменьшить или увеличит в А раз, то средняя арифметическая от этого не изменится:
xi * (fi /A) / (fi / A) = x.