
- •3) Вариационные ряды, их элементы.
- •4. Построение инт.Вар.Рядов
- •5) Понятие, формы выражения и виды статитстических показателей.
- •7. Средние величины и показатели вариации
- •8) Средняя арифметическая и её сво-йства.
- •9) Cтепенные средние q-го порядка.
- •10) Структурные (позиционные) сред-ние.
- •11. Показатели вариации
- •12. Дисперсия. Основные свойства.
- •13. Основные этапы статистического исследования
- •14. Понятие статистического наблюдения
- •15. Методологические вопросы организации стат. Наблюдения.
- •16. Формы, виды, способы стат. Наблюдения
- •17) Понятие выборочного наблюдения.
- •18) Способы формирования выборочной совокупности.
- •19) Определение ошибок выборки.
- •20) Определение объёма выборки.
- •21) Распространение результатов вы-борочного наблюдения на генеральную совокупность.
- •26) Статистические графики. Класси-фикация графиков.
- •41) Основные понятия и предпосылки применения корреляционно-регрессион-ного анализа.
- •44) Непараметрические показатели связи.
- •22. Задачи сводки и ее содержание
- •23. Метод группировки и его место в системе статистических методов
- •24.Виды статистических группировок
- •27. Понятие и классификация рядов дин-ки .
- •29. Смыкание рядов дин-ки
- •40. Основные понятия корреляционно-регрессионного анализа.
- •43. Измерение степени тесноты кор. Связи.
- •25. Понятие о стат-ой табле. Элементы стат-ой табл
- •42. Парная корреляция и множественная корреляция.
- •45. Множественная корреляция
- •53. Задачи статистики рынка труда.
29. Смыкание рядов дин-ки
При анализе рядов дин-ки возникает необходимость их смыкания-объединения двух и более рядов в один ряд. Смыкание необходимо в тех случаях, когда уровни рядов несопоставимы в связи с территориальными изменениями, в связи с изменением цен и в связи с изменением м-дики исчисления уровней ряда. необходимо сомкнуть (объединить) приведенные выше два ряда в один. Это можно сделать при помощи коэффициента сопоставимости. Умножая на полученный коэффициент данные за г., получим сомкнутый (сопоставимый) ряд дин-ки абсолютных величин 2 способ смыкания рядов дин-ки (способ приведения к одному основанию) заключается в том, что уровни года, в котором произошли изменения, как до изменения, так и после изме-й принимаются за 100%, а остальные пересчитываются в процентах по отн-ию к этим уровням соответственно.
30. М-ды выравнивания рядов дин-ки
Всякий ряд дин-ки теоретически может быть представлен в виде трех составляющих:
-тренда (основной тенд-и развития динамического ряда);
-циклических (периодических) колебаний, в том числе сезонных;
-случайных колебаний.
Одной из задач, возникающих при анализе рядов дин-ки, является установление изменения уровней изучаемого явления. В некоторых случаях закономерность изменения уровней ряда дин-ки вполне ясна, например, либо систематическое снижение уровней ряда, либо их повышение. иногда уровни ряда претерпевают самые различные изменения (то возрастают, го убывают). В этом случае можно говорить лишь об общей тенд-и разви-ия: либо к росту, либо к снижению.
Выявление основной тенд-и развития (тренда) наз-ся выравниванием временного ряда, а м-ды выявления основной тенден— м-ды выравнивания.
Непосредственное выделение тренда может быть произведено тремя ме-ми.
* М-д укрупнения интервалов. Этот м-д основан на укрупнении пер времени, к которым относятся уровни ряда. Например, ряд дин-ки
суточного выпуска продукции заменяется рядом месячного выпуска проекции и т.д.
* М-д скользящей средней. В этом м-де исходные уровни ряда заменяются средними величинами, к-ые получают из данного уровня и нескольких симметрично его окружающих. Целое число уровней, по которым рассчитывается среднее значение, называют интервалом сглаживания. Интервал сглаживания может быть нечетным (3, 5, 7 и т.д. точек) и четным (2, 4, 6 и т.д. точек). Расчет средних ведется способом скольжения, то есть постепенным исключением из принятого периода скольжения первого уровня и включение следующего. При нечетном сглаживании полученное среднее арифметическое значение закрепляют за серединой расчетного интервала.
«-» м-дики сглаживания скользящими средними состоит в условности определения сглаженных уровней для точек в начале и конце ряда.
* Аналит-ое выравнивание- является наиболее эффективным способом выявления основной тенд-и развития. При этом уровни ряда дин-ки выражаются в виде функции времени: Yt=f(t)
Целью аналит-ого выравнивания дин-го ряда является определение аналит-ой зав-ти f(t). На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t), а затем анализируют поведение отклонений от тенд-и.
-В экономике часто применяется функция вида: Уi = а0 +∑ аi +ti
Из функции вида (3.12) чаще всего при выравнивании используется линейная зав-ть /(*) = ао + а1 *t или параболическая f(t) = a0 +att + a2 t2.
Коэффициенты ао,а,,а2,...,ар в формуле находятся МНК.
Согласно этому м-ду для нахождения параметров полинома р-ой степени необходимо решить систему так называемых нормальных уравнений:
nаo+a1∑t=∑Y
ao∑t+ a1∑t*t= ∑Y*t.
Тренд показывает, как воздействуют систематические факторы на уро- ряда дин-ки. Колеблемость уровней около тренда служит мерой воздействия остаточных (случайных) факторов. Эту меру воздействия можно оценить
по формуле среднего квадратичного отклонения.