Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по статистике.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
456.7 Кб
Скачать

41) Основные понятия и предпосылки применения корреляционно-регрессион-ного анализа.

Корреляция – это статистическая зависи-мость между случайными величинами, не имеющими строго функционального ха-рактера, при которой изменение одной из случайных величин приводит к изме-нению матем-ского ожидания другой.

Корреляционный анализ – имеет своей за-дачей количественное определение тес-ноты связи между двумя признаками и между результативными и множеством факторных признаков. Теснота связи ко-личественно выражается величиной коэффициентов корреляции.

Корреляционно-регрессионный анализ как общее понятие включает в себя измере-ние тесноты, направления связи и уста-новление аналитического выражения (фо-рмы) связи (регрессионный анализ).

Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной вели-чины (называемой зависимой или резуль-тативным признаком) обусловлено влия-нием одной или нескольких независимых величин (факторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, прини-мается за постоянные и средние значе-ния. Регрессия может быть однофактор-ной (парной) и многофакторной (множес-твенной).

Целью регрессионного анализа являет-ся оценка функциональной зависимости условного среднего значения результа-тивного признака (У) от факторных (х1, х2, …хк) признаками.

Основной предпосылкой регрессионно-го анализа является то, что только резу-льтативный признак (У) подчиняется нормальному закону распределения, а факторные признаки х1, х2,…,хк могут иметь произвольный закон распределе-ния. В анализе динамических рядов в качестве факторного признака выступает время t. При этом в регрессионном анализе заранее подразумевается наличие причинно-следственных связей между результативным (У) факторными (х1, х2,…,хк) признаками. Уравнение регрессии, или статистическая модель связи социально-экономических явлений, выражаемая функцией Ух=f(х1, х2,…,хк), является достаточно адекватным реаль-ному моделируемому явлению или процессу в случае соблюдения следую-щих требований их построения.

1. Совокупность исследуемых исходных данных д/б однородной и математически описываеться непрерывными функциями.

2. Возможность описания моделируемого явления одним или несколькими уравне-ниями причинно-следственных связей.

3. Все факторные признаки должны иметь количественное (цифровое) выра-жение.

4. Наличие достаточно большого объёма исследуемой выборочной совокупности.

5. Причинно-следственные связи между явлениями и процессами следует описы-вать линейной или приводимой к линей-ной формами зависимости.

6. Отсутствие количественных ограниче-ний на параметры модели связи.

7. Постоянство территориальной и вре-менной структуры изучаемой совокуп-ности.

Теоретическая обоснованность моде-лей взаимосвязи, построенных на основе корреляционно-регрессионного анализа, обеспечивается соблюдением следующих основных условий.

1. Все признаки и их совместные распределения должны подчиняться нор-мальному закону распределения;

2. Дисперсия моделируемого признака (У) должна всё время оставаться постоян-ной при изменении величины (У) и зна-чений факторных признаков.

3. Отдельные наблюдения д/б независи-мыми, т. е. результаты, полученные в i - ом наблюдении, не должны быть связа-ны с предыдущими и содержать инфор-мацию о последующих наблюдениях, а также влиять на них.