
- •Глава 11. Зрение. О.-й. Грюссер, у. Грюссер-Корнелъс
- •11.1. Смотреть, видеть, созерцать
- •Движения глаз при рассматривании сложных изображений
- •Нейронная регуляция движений глаз
- •11.2. Свет и его восприятие
- •Глава 11. Зрение 239
- •Глаз и его диоптрический аппарат
- •Формирование изображения на сетчатке
- •Глава 11. Зрение 243
- •Оптические недостатки глаза и аномалии рефракции
- •Глава 11. Зрение 245
- •Исследование внутренней структуры глаза с помощью офтальмоскопа
- •Внутриглазное давление
- •11.3. Восприятие и обработка сигналов сетчаткой
- •Глава 11. 3pehие 247
- •Теория двойственности зрения
- •Процесс трансдукции при зрении
- •Глава 11. Зрение 249
- •Роговично-сетчаточный потенциал и электроретинограмма (эрг)
- •Глава 11. Зрение 251
- •Рецептивные поля нейронов сетчатки
- •Классы ганглиозных клеток сетчатки
- •11.4. Нейрофизиология и психофизика восприятия света и темноты
- •Глава 11. Зрение 253
- •Нейрофизиологическая основа одновременного контраста
- •Изменение остроты зрения и организации рецептивных полей при изменениях окружающей освещенности
- •Световая и темновая адаптация, послеобразы. Влияние сверхъярких стимулов
- •Глава 11. Зрение 255
- •Фосфены давления
- •Временные особенности передачи сигналов в сетчатке
- •11.5. Обработка сигналов в центральных отделах зрительной системы Центральные зрительные пути
- •Глава 11. Зрение 257
- •Ретинотопическая организация зрительного пути
- •Обработка сигналов в латеральном коленчатом теле (лкт)
- •Обработка сигналов в первичной зрительной коре (VI, поле 17)
- •Глава 11. Зрение 259
- •Примеры «отбора сигналов» нейронами зрительной коры
- •Зрительные области коры мозга за пределами первичной зрительной коры (экстрастриарная зрительнаи кора)
- •Глава 11. Зрение 261
- •Движение глаз и активация корковых зрительных нейронов
- •Нейронное отображение окружающего пространства
- •Глава 11. Зрение 263
- •11.6. Практические и клинические аспекты физиологии зрения Нейрофизиологические основы восприятия формы
- •Измерение остроты зрения
- •Определение поля зрения и его дефектов с помощью периметрии
- •Глава 11. Зрение 265
- •Восприятие глубины
- •Зрительное восприятие движения и собственного движения наблюдателя
- •Косоглазие
- •Глава II. Зрение 269
- •11.7. Цветовое зрение Цвет и измерение цвета
- •Глава 11. Зрение 271
- •Физиологическая основа цветового зрения
- •Глава 11. Зрение 273
- •Нарушения цветового зрения
- •11.8. Литература
Формирование изображения на сетчатке
Основы физической оптики. Простейший оптический прибор - камера-обскура - устройство, в котором маленькое входное отверстие создает перевернутое изображение. Последнее будет резким только в том случае, если это отверстие (апертура) будет достаточно мало. Но тогда освещенность получаемого изображения оказывается очень слабой. Апертуру можно увеличить, если спереди или позади отверстия поместить выпуклую линзу. Теперь изображение на «воспринимающей поверхности» будет перевернутым и уменьшенным. Тот же принцип реализуется и в сложной оптической системе глаза-граница между воздухом и роговицей действует как линза, помещенная перед апертурой (зрачком, диаметр которого изменяется при сокра-
щении мышц радужной оболочки), а позади нее расположен двояковыпуклый хрусталик (рис. 11.6) [9, 12, 22, 26].
Лучепреломление (рефракция) и фокусное расстояние. Если луч света падает на границу раздела двух прозрачных сред с разными коэффициентами преломления (п), он отклоняется на угол, зависящий от его угла падения (рис. 11.6,А). Все лучи, параллельные оптической оси сферической поверхности раздела (т. е. линии, проходящей через главную точку Η на рис. 11.6, А), преломляются таким образом, что сходятся в фокусе (F1, F2). Преломляющяя сила системы зависит от радиуса кривизны (г) границы раздела двух сред и их коэффициентов преломления n1 и n2 . Параллельные лучи, проходящие через поверхность раздела со стороны среды с меньшим коэффициентом преломления (n1), сходятся в точке фокуса (F2), лежащей в среде с большим коэффициентом преломления. Фокусное расстояние «позади» линзы (f2 = Η — F2) вычисляется по формуле
О)
Если же параллельные лучи проходят через границу раздела с противоположной стороны, они сходятся в точке F1. Тогда фокусное расстояние «перед» линзой определяется формулой
(2)
Эти уравнения справедливы только для узкой (гауссовой) зоны вокруг оптической оси, т.е. линии, соединяющей фокусы F1 и F2; она пересекает поверхность раздела в главной точке Н. Узловая точка N-это центр сферы, образующей поверхность раздела. Преломляющая сила (ПС) последней определяется уравнением
(3)
Если фокусное расстояние f задано в метрах, единицей преломляющей (оптической) силы будет диоптрия (дп).
ПC1 линзы с двумя преломляющими поверхностями можно вычислить по формуле Гульстранда:
ГЛАВА И. ЗРЕНИЕ 241
|
Рис. 11.6. Формирование изображения в простой оптической системе, в схематическом и редуцированном глазу. А. Ход лучей от объекта (0) к изображению (1) в простой оптической системе. F1 , F2-фокусы, Η главная точка, N узловая точка. Показатель преломления п2 > п1. Б. Упрощенный ход пучей в составной центрированной оптической системе, представленной двумя главными плоскостями Н и Н' и двумя узловыми точками N и Ν'. В. Схематический глаз по Гульстранду. Г. Редуцированный глаз. Точки Η и Η', Ν и Ν' схематического глаза наложены друг на друга. Зная расстояние от N до 1 (16,7 мм) и угловые размеры (а) объекта, можно вычислить размер его изображения на сетчатке (I): угловому размеру объекта 1° примерно соответствует расстояние 0,29 мм на сетчатке глаза |
(4)
где ПCf-преломляющая сила передней поверхности линзы, а ПСb - ее задней поверхности, d - расстояние между ними в метрах, n - коэффициент преломления заключенной между ними среды.
Формирование изображения. Если объект расположен в d0 метрах от сферической линзы с фокусным расстоянием f, с противоположной ее стороны формируется его изображение на расстоянии di , метров. Если коэффициент преломления среды с обеих сторон одинаков, справедливо соотношение
(5)
Если объект находится в бесконечности (т.е. удален на достаточно большое расстояние), член l/d0 стремится к нулю, в силу чего расстояние до формируемого изображения становится равным фокусному расстоянию (f) линзы. Следовательно, последнее можно определить, измерив расстояние от изображения до линзы при удаленном в бесконечность объекте.
Формирование изображения диоптрическим аппаратом глаза. В табл. 11.1 сведены все данные, необходимые для расчета оптических параметров глаза. Фокусное расстояние со стороны объекта (f0) поверхности раздела воздух-роговица вычисляется по уравнению (2)
(6)
Таким образом, преломляющая сила передней поверхности роговицы равна 1/0,0205 = 48,8 дп. Лучи света, падая на границу раздела роговицы и водянистой влаги, расходятся, поскольку nвв < nр (табл. 11.1). Из уравнений (1) и (3) можно вывести, что преломляющая сила этой поверхности составляет —5,9 дп. Теперь для вычисления общей преломляющей силы системы воздух-роговица водянистая влага используем формулу Гульстранда (уравнение 4); учитывая, что d = 0,5 мм. В результате получим 43 дп. Фокусное расстояние со стороны изображе-
Таблица 11,1. Схематический глаз (по Гульстранду)
Показатели преломления: |
|
|
воздуха, nв |
1,00 |
|
роговицы, nр |
1,376 |
|
водянистой влаги и стекловидного тела, nвв |
1,336 |
|
хрусталика, nк, |
1,414 (неаккомодированный, Н) |
|
хрусталика |
1,424 (аккомодированный, |
|
|
А) |
|
|
Радиус кривизны. мм |
, Расстояние от полюса роговицы, мм |
Передняя поверхность роговицы |
7,7 |
0 |
Задняя поверхность роговицы |
6,8 |
0,5 |
Передняя поверхность хрусталика |
10,0 (Н) |
5,6 (Н) |
Передняя поверхность хрусталика |
5,3 (А макс.) |
5,2 (А макс.) |
Задняя поверхность хрусталика |
-6,0 (Н) |
7,2 |
Задняя поверхность хрусталика |
— 5,3 (А макс.) |
7,2 |
Сетчатка |
|
24,4 |
Первая главная точка, Η |
|
1,35 |
Вторая главная точка, Н' |
|
1,60 |
Передняя узловая точка, N |
|
7,05 |
Задняя узловая точка, Ν' |
|
7,30 |
Фокусное расстояние со стороны изображения |
|
22,78 (Н) |
Фокусное расстояние со стороны объекта |
|
-17,05 (Н) |
242 ЧАСТЬ III. ОБЩАЯ И СПЕЦИАЛЬНАЯ СЕНСОРНАЯ ФИЗИОЛОГИЯ
ния fu общей системы роговицы находим с помощью уравнений (I) и (3):
(7)
Хрусталик. Таким образом, чтобы получить четкое изображение в центральной ямке, расположенной на расстоянии 24,4 мм от полюса роговицы, требуется дополнительная преломляющая сила хрусталика. Двояковыпуклый хрусталик состоит из нескольких пластинчатых слоев, отличающихся друг от друга как по радиусу кривизны, так и по показателю преломления. Последний постепенно возрастает от периферии к центру. Таким образом, хрусталик оптически неоднороден. В табл. 11.1 указан общий показатель преломления хрусталика, определенный экспериментально. Он больше, чем у его отдельных слоев. Гульстранд показал, что преломляющая сила хрусталика в его максимально уплощенном состоянии равна в среднем 19,1 дп.
Общий показатель преломления глаза. Зная преломляющую силу роговицы и хрусталика, можно вычислить общую преломляющую силу диоптрического аппарата глаза. Используя формулу Гульстранда (4) при d = 5,6 мм и n = nBВ = 1,336, можно найти, что она равна 58.6 дп. Отсюда выводится фокусное расстояние всего глаза со стороны изображения (основной параметр построения последнего):
(8)
Схематический глаз. Построить схему процесса формирования изображения сложной оптической системой легче, если определить ее главные точки (подробности см. в руководствах по оптике). При этом общее действие всех преломляющих поверхностей представляется с помощью двух главных плоскостей (Н, Н'), двух узловых точек (N и N') и двух фокусов (F1, F2. рис. 11.6, Б). Гульстранд определил соответствующие величины для глаза человека; они приведены в табл. 11.1 (рис. 11.6, В). Расстояние от полюса роговицы до задней главной точки (1,6 мм) и фокусное расстояние глаза со стороны изображения (22,8 мм) дают в сумме расстояние от роговицы до центральной ямки (24,4 мм).
Редуцированный глаз. Еще проще схема редуцированного глаза (рис. 11.6,Г), в которой Η совпадает с Н', a N - c N'. Здесь расстояние от узловой точки N до сетчатки составляет 16.67 мм. Зная эту величину и угол а, под которым виден объект, можно определить размер его изображения на сетчатке.
Процессы регуляции в диоптрическом аппарате
Преломляющая способность хрусталика и диаметр зрачка изменяются при сокращении гладких мышц глаза, которые управляются нейронными механизмами.
Реакции зрачка. В норме зрачки обоих глаз круглые и их диаметры одинаковы. Средний диаметр зрачка уменьшается с возрастом.
Реакция на свет. При постоянном освещении количество света, попадающее в глаз за единицу времени, пропорционально площади зрачка. При снижении внешней освещенности зрачок рефлекторно расширяется. Если при дневном свете человек
закроет глаза на 10-20 с, его зрачки увеличатся. Когда он снова их откроет, зрачки сузятся. Эту реакцию на свет можно исследовать более детально, освещая глаза по отдельности (рис. 11.7). Если осветить один глаз, то через 0,3 0,8 с его зрачок сократится (прямая реакция на свет); у неосвещенного глаза он сократится тоже (содружественная реакция на свет). Ясно, что речь идет о полезном регуляторном механизме, снижающем в условиях слишком сильного освещения (например, в яркий солнечный день) количество света, падающего на сетчатку, и увеличивающем его при плохом освещении. В этой регуляторной цепи с отрицательной обратной связью датчиками служат рецепторы сетчатки, а регулируемой переменной -диаметр зрачка. У молодых людей последний может варьировать в пределах от 1,5 мм до примерно 8 мм, что позволяет изменять количество света, достигающего сетчатки, приблизительно в 30 раз. Однако зтот механизм не компенсирует весь диапазон колебаний внешней освещенности (см. с. 238).
Реакция прн рассматривании близких предметов (конвергентная реакция). Диаметр зрачка человека зависит также от расстояния до фиксируемого предмета. Если испытуемый сначала смотрит вдаль, а затем переводит взгляд на объект, расположенный в 30 см от него, зрачки сужаются. Поскольку оси глаз при этом обычно сводятся друг к другу (с. 235), такая реакция называется конвергентной. Настройка зрачка на ближний объект сопровождается увеличением преломляющей силы хрусталика (см. ниже). Как и в фотоаппарате, при уменьшении апертуры глубина резкости в глазу увеличивается.
Функция зрачковых мышц и их иннервации (рис. 11.8). Зрачковые реакции осуществляются с помощью двух систем гладких мышц в радужной оболочке. При сокращении кольцевой мышцы-сфинктера зрачок сужается (миоз); при сокращении мышцы-дилататора, волокна которой проходят в радужной оболочке радиально, он расширяется (мидриаз). Сфинктер иннервируется парасимпатическими нервными волокнами, выходящими из цилиарного (ресничного) ганглия, расположенного позади глаза. Преганглионарные волокна отходят от зрачководвигательных нейронов ядра Эдингера-Вестфаля, которое является «вегетативной» частью глазодвигательного ядра ствола мозга, и направляются к глазнице в составе глазодвигательного нерва. Уровень активации зрачководвигательных нейронов этого ядра регулируется нейронами претектальной зоны (рис. 11.8). Здесь оканчиваются аксоны слоя ганглиозных клеток сетчатки и зрительной коры (полей 18 и 19). Дилататор, напротив, иннервируется симпатическими нервными волокнами, возбуждаемыми нейронами цилиоспинального центра, расположенного на уровне восьмого шейного и первого, второго грудных сегментов спинного мозга. Аксоны нейронов этого центра идут через шейный отдел симпатической цепочки в верхний шейный ганглий, где образуют синапсы с постганглионарными нейронами. Аксоны последних направляются в глазницу вдоль внутренней сонной и глазной артерий и переходят там в цилиарный нерв. Уровень активации