
- •Глава 11. Зрение. О.-й. Грюссер, у. Грюссер-Корнелъс
- •11.1. Смотреть, видеть, созерцать
- •Движения глаз при рассматривании сложных изображений
- •Нейронная регуляция движений глаз
- •11.2. Свет и его восприятие
- •Глава 11. Зрение 239
- •Глаз и его диоптрический аппарат
- •Формирование изображения на сетчатке
- •Глава 11. Зрение 243
- •Оптические недостатки глаза и аномалии рефракции
- •Глава 11. Зрение 245
- •Исследование внутренней структуры глаза с помощью офтальмоскопа
- •Внутриглазное давление
- •11.3. Восприятие и обработка сигналов сетчаткой
- •Глава 11. 3pehие 247
- •Теория двойственности зрения
- •Процесс трансдукции при зрении
- •Глава 11. Зрение 249
- •Роговично-сетчаточный потенциал и электроретинограмма (эрг)
- •Глава 11. Зрение 251
- •Рецептивные поля нейронов сетчатки
- •Классы ганглиозных клеток сетчатки
- •11.4. Нейрофизиология и психофизика восприятия света и темноты
- •Глава 11. Зрение 253
- •Нейрофизиологическая основа одновременного контраста
- •Изменение остроты зрения и организации рецептивных полей при изменениях окружающей освещенности
- •Световая и темновая адаптация, послеобразы. Влияние сверхъярких стимулов
- •Глава 11. Зрение 255
- •Фосфены давления
- •Временные особенности передачи сигналов в сетчатке
- •11.5. Обработка сигналов в центральных отделах зрительной системы Центральные зрительные пути
- •Глава 11. Зрение 257
- •Ретинотопическая организация зрительного пути
- •Обработка сигналов в латеральном коленчатом теле (лкт)
- •Обработка сигналов в первичной зрительной коре (VI, поле 17)
- •Глава 11. Зрение 259
- •Примеры «отбора сигналов» нейронами зрительной коры
- •Зрительные области коры мозга за пределами первичной зрительной коры (экстрастриарная зрительнаи кора)
- •Глава 11. Зрение 261
- •Движение глаз и активация корковых зрительных нейронов
- •Нейронное отображение окружающего пространства
- •Глава 11. Зрение 263
- •11.6. Практические и клинические аспекты физиологии зрения Нейрофизиологические основы восприятия формы
- •Измерение остроты зрения
- •Определение поля зрения и его дефектов с помощью периметрии
- •Глава 11. Зрение 265
- •Восприятие глубины
- •Зрительное восприятие движения и собственного движения наблюдателя
- •Косоглазие
- •Глава II. Зрение 269
- •11.7. Цветовое зрение Цвет и измерение цвета
- •Глава 11. Зрение 271
- •Физиологическая основа цветового зрения
- •Глава 11. Зрение 273
- •Нарушения цветового зрения
- •11.8. Литература
Классы ганглиозных клеток сетчатки
Стимуляция ахроматическим светом сетчатки млекопитающих позволила обнаружить три основных класса ганглиозных клеток. Два из них описаны выше-их рецептивные поля организованы антагонистически. Ганглиозные клетки с оп-центром деполяризуются в ответ на освещение центра РП; эта деполяризация в аксонном холмике преобразуется в последовательность потенциалов действия (по закону «все или ничего», см. с. 30) (рис. 11.13, 11.20). С другой стороны, как освещение периферии РА, так и «выключение света» в центре РП вызывают гиперполяризацию их мембранного потенциала и, следовательно, кратковременное торможение нейронной активности. Если центр и периферия РП освещаются одновременно, доминирует реакция центра. Однако при этом активация меньше, чем при освещении только центра РП, поскольку его возбуждение и торможение периферии РП суммируются (рис. 11.20).
Рецептивные поля ганглиозных клеток с off-центром функционально противоположны только что описанным. Освещение их центра приводит к «прямому» торможению, а ослабление падающего света-к «off-активации». Освещение периферии РП ведет к латеральной активации, а «выключение света» на периферии-к кратковременному «латеральному» торможению частоты импульсации нейрона. При одновременном освещении центра и периферии эти эффекты суммируются, причем торможение и off-активация, связанные с центром РП, как правило, доминируют (рис. 11.20).
Ганглиозные клетки on-off-типа обычно дают короткий on-ответ на стационарный световой стимул и короткую off-реакцию на ослабление света. В этот класс клеток входят, например, нейроны,
чувствительные к движению, особенно хорошо воспринимающие перемещение через их рецептивное поле границы света и темноты. При этом степень возбуждения зависит от угловой скорости стимула.
Еще одна классификация ганглиозных клеток основана на скорости проведения сигналов по их аксонам. У большинства крупных ганглиозных клеток со сравнительно толстыми миелинизированными аксонами она высока (см. с. 47). На освещение рецептивного поля они дают короткий «фазический» ответ (нейроны I класса латентности, или Y-нейроны). Гораздо многочисленнее мелкие ганглиозные клетки с более тонкими миелинизированными аксонами, которые на освещение центра РП реагируют «тоническим» возбуждением или торможением (нейроны II класса латентности, или Х-нейроны). Среди Х- и Y-нейронов клетки с on- и off-центром одинаково часты. Наконец, в сетчатке есть ганглиозные клетки с тонкими, лишь слегка миелинизированными аксонами (III класса латентности, или W-нейроны). К этому классу в основном и относятся on-off-нейроны, чувствительные к движению.
Даже если не рассматривать цветоспецифичные реакции ганглиозных клеток сетчатки (с. 273), очевидно, что она представляет собой сложную нейронную систему. Уже внутри нее самой изображение, активирующее входной слой рецепторов, преобразуется в несколько типов возбуждения различных ганглиозных клеток [10, 49, 52].