
- •Оглавление
- •Глава 1. Архитектура вычислительных систем 11
- •Глава 2. Реализация параллельных алгоритмов 63
- •Глава 3. Надежность и живучесть вычислительных систем 96
- •Глава 4. Библиотека параллельных программ 120
- •Глава 5. Граф-схемы параллельных алгоритмов 150
- •Глава 6. Исследование информационных граф-схем со скалярными весами для планирования параллельных вычислений 182
- •Глава 7. Исследование информационных граф-схем решаемых задач с векторными весами для планирования параллельных вычислений 204
- •Глава 1. Архитектура вычислительных систем
- •1.Количественные характеристики, применяемые для оценок параметров вычислительных систем
- •Для случая неоднородной системы номинальное быстродействие выразится как
- •Здесь – вероятность выбора j-й операции, , . Для однородной вс её быстродействие по Гибсону выразится соотношением
- •Для неоднородной вс это быстродействие может быть определено, как
- •1.1.1. Вопросы к разделу 1.1.
- •2.Понятие о современных вычислительных системах
- •Пример графа регулярной вычислительной системы представлен на рисунке 1.2.1.
- •Примечание: Для регулярной вычислительной системы
- •2.1. Вопросы к разделу 1.2.
- •3.Структура современных вычислительных систем
- •3.1.Схема обмена с помощью структуры «Общая шина»
- •3.2.Схема обмена с помощью структуры «Линейка»
- •3.3.Вычислительная система, имеющая структуру типа «Кольцо»
- •3.4.Схема обмена с помощью структуры типа «Решётка»
- •1.3.5. Схема обмена с помощью структуры типа «Двумерный тор»
- •3.1.Схема обмена с помощью структуры типа «n-мерный двоичный гиперкуб» или «nD-куб»
- •3.2.Реализация обмена с помощью структуры типа «Обобщенный nD-куб»
- •3.3.Структура вс типа «n-мерный обобщённый тор»
- •3.4.Структура вс с сетью типа «Циркулянт»
- •1.3.10. Вычислительная система «Максимальный обхват»
- •1.3.11. Вычислительные системы со структурой сетей типа «Симметричные графы»
- •На рисунке 1.3.11. Представлена вс с симметричным графом.
- •1.3.12. Вычислительные системы с сетью связей типа «Гомоморфные графы»
- •1.3.13. Вычислительные системы с сетью связей типа «Граф л(n,V,g)»
- •1.3.14. Структура вычислительной системы типа «Бинарное дерево t0(n) глубины n»
- •1.3.15. Структура вычислительной системы типа «Мультидерево глубины n и ширины k t1(n,k)»
- •3.5. Вопросы к разделу 1.3
- •4.Коммуникационные среды вычислительных систем
- •Коммуникационная среда должна удовлетворять следующим требованиям:
- •4.1.Коммуникационная среда на основе масштабируемого когерентного интерфейса sci
- •4.2.Коммуникационная среда на основе технологии Myrinet
- •1.4.3. Краткая характеристика коммуникационной среды QsNet II
- •4.3. Вопросы к разделу 1.4
- •5.Коммутаторы вычислительных систем
- •1.5.1. Типы коммутаторов
- •5.1. Управление коммутаторами
- •5.2. Алгоритмы определения маршрутов
- •5.3. Дедлоки в составных коммутаторах
- •5.4.Вопросы к разделу 1.5
- •6.Процесс функционирования вычислительных систем
- •6.1. Вопросы к разделу 1.6.
- •7.Принципы технической реализации вс
- •1.7.1. Вопросы к разделу 1.7
- •1.8. Архитектурные особенности вс
- •1.8.1. Архитектурные свойства вс
- •1.8.2. Схема обмена информацией между ветвями параллельных алгоритмов
- •7.1.Опыт применения методики крупноблочного распараллеливания сложных задач
- •7.2.Архитектурные аспекты при создании ос вс
- •7.3.Структурные характеристики вс
- •7.4.Классификация структур вс
- •7.5.Вопросы к разделу 1.8.
- •Глава 2. Реализация параллельных алгоритмов
- •2.1. Реализация параллельных алгоритмов
- •2.1.1. Определение параллельного алгоритма
- •7.6.Организация динамического распараллеливания в суперскалярных микропроцессорах
- •2.1.3. Предварительная выборка команд и предсказание переходов
- •7.7.Декодирование команд, переименование ресурсов и диспетчеризация
- •7.8.Исполнение команд
- •2.1.6. Работа с памятью
- •2.1.7. Завершение выполнение команды
- •2.1.8. Направления развития суперскалярной архитектуры
- •7.9.Мультитредовая модель выполнения программы
- •7.10.Аппаратные и программные средства, необходимые для мультитредовой архитектуры
- •2.1.11. Специфика мультитредовых моделей распараллеливания
- •2.1.12. Вопросы к разделу 2.1
- •2.2.Организация распараллеливания на уровне программных модулей
- •2.2.1. Примеры организации вычислений на уровне программных модулей
- •2.2.2. Решение системы линейных уравнений методом Гаусса с помощью вс типов «решётка» и «линейка»
- •2.2.3. Исполнение алгоритма Гаусса на «решётке» n*n вm
- •2.2.4. Исполнение алгоритма Гаусса на «линейке», состоящей из n вм
- •2.2.5. Показатели эффективности параллельных алгоритмов
- •2.2.6. Понятие о сложных задачах
- •2.2.7. Вопросы к разделу 2.2
- •Глава 3. Надежность и живучесть вычислительных систем
- •8.Основные задачи создания отказоустойчивых систем
- •8.1.Вопросы к разделу 3.1
- •9.Классификация типов отказоустойчивости сложных систем и ее критерии
- •9.1.Вопросы к разделу 3.2
- •10.Способы обеспечения отказоустойчивого функционирования вс
- •3.3.1. Диагностическое тестирование вс
- •3.3.3. Способы восстановления отказоустойчивых вс
- •10.1.Вопросы к разделу 3.3
- •3.4. Построение живучих вс на основе экспоненциально- надежностного подхода
- •3.4.1. Показатели надежности вс
- •10.2. Методика расчета показателей надежности вс
- •3.4.3. Живучесть вс
- •3.4.4. Вопросы к разделу 3.4
- •11.Построение живучих вс, работоспособных в расчетном диапазоне кратностей отказов
- •3.5.1. Вопросы к разделу 3.5
- •3.6. Реализация модели отказоустойчивых систем
- •3.6.1. Горячий резерв
- •3.6.2. Репликация
- •3.6.3. Кластеры высокой готовности
- •4.1.2. Принципиальная схема программирования в OpenMp
- •11.2. Описание основных конструкций open mp
- •4.1.4. Способы построения параллельных программ
- •4.1.6. Вопросы к разделу 4.1
- •4.2. Основы построения библиотеки mpi
- •4.2.1. Основные понятия
- •4.2.2. Структура программ в mpi
- •4.2.3. Определение структуры приходящего сообщения
- •4.2.4. Определение базовых характеристик коммуникационной сети
- •11.4.Анализ тупиковых ситуаций при обмене
- •4.2.6. Организация передачи-приёма сообщений без блокировки
- •4.2.7. Реализация отложенных запросов на взаимодействие
- •4.2.8. Сравнительная оценка различных способов обмена данными
- •4.2.9. Использование глобальных операций в mpi
- •4.2.10. Взаимодействие процессов в mpi
- •4.2.11. Вопросы к раделу 4.2
- •Глава 5. Граф-схемы параллельных алгоритмов
- •5.1. Представление параллельных алгоритмов в виде граф-схем
- •5.1.1. Преобразование последовательных алгоритмов в параллельные
- •5.1.2.Использование граф-схем для представления параллельных алгоритмов
- •5.1.3. Вопросы к разделу 5.1
- •5.2.1. Вычисление матриц следования, расширенных матриц следования и матриц следования с транзитивными связями
- •5.2.2. Вопросы к разделу 5.2
- •11.5.Построение матрицы логической несовместимости.
- •5.3.2. Построение матрицы логической несовместимости операторов
- •5.3.3. Вопросы к разделу 5.3
- •5.4.1. Построение множеств взаимно независимых операторов.
- •5.4.2. Вопросы к разделу 5.4
- •Глава 6. Исследование информационных граф-схем со скалярными весами для планирования параллельных вычислений
- •6.1. Численные характеристики информационных граф-схем со скалярными весами
- •6.1.1 Определение ранних и поздних сроков окончания выполнения операторов.
- •11.6.Определение функций плотности загрузки, и минимальной загрузки для информационных граф-схем
- •6.1.3. Вопросы к разделу 6.1
- •6.2.1. Распределение операторов по вм вычислительной системы с общим полем памяти для информационной граф-схемы
- •6.2.2. Распределение операторов по вм вычислительной системы с общим полем памяти для информационно-логической граф-схемы
- •При срабатывании условного оператора «один», дуги 1.1 требуется 10 вм. Время решения задачи составит 22 условные единицы.
- •6.2.3. Распределение операторов по вм вычислительной системы с распределённой памятью для информационной граф-схемы
- •6.2.4. Реализация диаграмм для общепринятых способов обмена данными между вм вычислительной системы с распределённой памятью для информационной граф-схемы
- •6.2.5. Вопросы к разделу 6.2
- •Глава 7. Исследование информационных граф-схем решаемых задач с векторными весами для планирования параллельных вычислений
- •7.1 Информационная граф-схема решаемых задач с векторными весами вершин
- •7.1.1 Понятие об неоднородных системах
- •7.1.2. Основные определения, используемые для неоднородных вс
- •7.1.3. Вопросы к разделу 7.1
- •Литература
4.2.Коммуникационная среда на основе технологии Myrinet
Сетевую технологию Myrinet представляет компания Myricom [20]. Кроме продуктов в стандарте Myrinet и программного обеспечения, она поставляет различным компаниям компоненты высокоскоростных сетей и пакетной маршрутизации – от специализированных СБИС до аппаратно-программных комплексов. Технология Myrinet основана на использовании многопортовых коммутаторов при длинах связей узлов с портами коммутатора, ограниченных несколькими метрами. Узлы в Myrinet объединяются с помощью коммутатора (до 128 портов(чаще от 4х до 16)). Максимальная длина линий связи зависит от конкретной реализации. Линки между узлами и коммутатором образуют полнодуплексные каналы с пропускной способностью 160 Мбайт/с по каждому направлению. Пропускные способности адаптеров зависят от длины передаваемых сообщений в установившемся режиме. Реализация Myrinet для оптоволоконного канала с использованием конвертеров поддерживает расстояние между узлами до 10 км. Эта технология поддерживается на различных платформах – Intel, MIPS, PowerPC, UltraSPARC, Alpha под управлением операционных систем FreeBSD, Linux, UNIX, IRIX, Windows NT, Solaris, Tru64 VxWorks. Сеть Myrinet, структура которой похожа на сегменты сети Ethernet, соединенные коммутаторами, может одновременно передавать несколько пакетов со скоростью чуть меньше 2 Гбит/с.
В отличие от Ethernet и FDDI сетей, которые разделяют общую среду передачи, совокупная пропускная способность сети Myrinet возрастает с увеличением количества машин. На сегодняшний день Myrinet чаще всего используют как локальную сеть (LAN) сравнительно небольшого физического размера (несколько метров). Из-за своей высокой скорости, малого времени задержки, прямой коммутации и умеренной стоимости, система Myrinet особенно популярна для объединения компьютеров в кластеры. Myrinet также выполняет роль системной сети (System Area Network, SAN), объединяя компьютеры в кластер внутри стойки с более низкой стоимостью, чем Myrinet LAN, но с той же производительностью. Размер пакетов сети Myrinet жестко не задан. Поэтому, они могут включать в себя другие типы пакетов. Передача пакетов в коммутаторах происходит при установлении соединения на время передачи. Для маршрутизации сообщений используются различные алгоритмы прокладки путей. На физическом уровне линки Myrinet состоят из 9 проводников: в зависимости от состояния девятого бита определяется, что передаётся в оставшихся 8 битах – байт данных или управляющая информация. На каждом линке есть управление потоком и контроль ошибок. Среда Myrinet обладает, в отличие от других коммуникационных сред, например SCI, простотой концепции и аппаратной реализации протоколов, а также сравнительно низкой стоимостью сетевого оборудования. Она содержит ограниченный набор средств управления трафиком, использующих приливно-отливный буфер, управляющие символы и таймерные интервалы. Myrinet является открытым стандартом. К программному обеспечению, которое используется при внедрении Myrinet, относится низкоуровневый интерфейс программирования GM, MPICH/GM, PVM/GM, стек TCP/IP (распространяется свободно в исходных текстах), а также коммерческие продукты – MPIPro, Scali MPI Connect. Ранее до 28 % (июнь 2005) кластерных установок из списка Top500 самых мощных компьютеров мира были построены с применением Myrinet. Теперь этот показатель упал до 2 % (2009 год).[7]
Подводя итоги рассмотрению системы Myrinet, отметим её достоинства и недостатки. Достоинствами системы Myrinet являются: широкое распространение и высокая надежность; хорошее соотношение цена/производительность.
- малое время задержки;
- полнодуплексные 1,28 + 1,28 Гбит/сек линки и коммутируемые порты;
-управление потоком и контроль ошибок на каждом линке;
- интерфейсы хоста выполняют управляющую программу, чтобы напрямую взаимодействовать с процессами, посылать, принимать и выполнять буферизацию пакетов, а также осуществлять мониторинг сети.
Рисунок 1.4.2. Структура вычислительных систем, построенных с использованием адаптеров и коммутаторов Myrinet: а) Система, образованная прямым соединением линков адаптеров, б) Система, образованная с применением коммутаторов линков
К недостаткам системы Myrinet следует отнести:
- нестандартное решение, поддерживаемое всего одним производителем;
- сложная структура кабельной проводки при максимуме 256 узлов ;
- ограниченная пропускная способность – не более 2 Гбит/с (стандарт Myri-10G до 10 Гбит/с);
- отсутствие возможности подключения к сетям хранения и глобальным сетям;
- отсутствие систем хранения с поддержкой этой технологии.