
- •Осязательный органолептический анализ
- •Организация сенсорных исследований
- •Этапы и порядок проведения органолептического анализа
- •Методы сенсорного анализа
- •Тема №2 Оптические методы анализа
- •Поляриметрический метод анализа
- •Фотометрические методы анализа.
- •Фотофлуроуметрический метод анализа.
- •Количественный анализ
- •Тема №4 Микроскопические методы анализа
- •Оптическая спектроскопия.
- •Сканирующая зондовая микроскопия (сзм).
- •Разновидности асм.
- •Физические методы исследований.
- •Двухзондовый метод
- •Четырёхзондовый метод.
- •Однозондовый метод
- •Бесконтактные методы
- •Измерение диэлектрических свойств
- •Измерение диэлектрической проницаемости порошков
- •Измерение диэлектрических свойств твёрдых тел.
- •Термический анализ
- •Дифферинциальный термический анализ (дта)
- •Термогравиметрический анализ
- •Химические сенсоры Полупроводниковые сенсоры.
- •Сенсоры на основе мдп-структур
- •Сенсор на основе твёрдых электролитов
- •Потенциометрические сенсоры
Термогравиметрический анализ
Термогравиметрия метод термического анализа в котором регистрируется изменения массы образца в зависимости от температуры, когда температура системы изменяется по заданному ( линейному закону).
Экспериментально получаемая кривая зависимостей массы от температуры позволяет судить о термостабильности исследуемого вещества, о составе и термостабильности веществ образующихся на промежуточных стадиях. Метод особенно эффективен, если при нагревании образец выделяет летучие вещества в результате различных физических и химических процессов ( испарение, горение и т.д.).
Пропущена лекция
Химические сенсоры Полупроводниковые сенсоры.
Пропущено 7 минут лекции
Рисунок.
Сенсор представляет собой систему элементов, включающий абсорбционно чувствительный полупроводниковый слой 1, снабжённый электрическими контактами 2, сформированных на изоляционной подложке 3, т.к. температуры детектирования газов высоки от 50 до 700 подложку снабжают нагревательным элементом и средством контроля температуры 4 (плёночные терморезисторы).
Система растровых электродов на которые осаждается плёнка абсорбционно чувствительного материала позволяет снизить электрическое сопротивление чувствительного элемента. Сопротивление чувствительного элемента зависит от химической природы и количества абсорбированных из газовой фазы частиц.
На поверхности проводника n-типа при хемосорбции кислорода локализуется отрицательный заряд образованный захваченными электродами, что приводит к обеднению приповерхностного слоя. Когда сорбируется анализируемый газ, взаимодействующий с сорбированным кислородом проводимость приповерхностной области существенно возрастает, если газ обладает восстановительными свойствами и уменьшается если окислительными. Для полупроводников p-типа всё наоборот.
Скорость протекающих процессов и их обратимость зависит от температуры. Выходным сигналом таких сенсоров является относительная чувствительность, то есть относительное изменение сопротивления чувствительного элемента до и вовремя воздействия детекрируемого газа. Чем выше относительная чувствительность тем выше точность показаний и разрешающая способность сенсора. Поскольку газы различной природы приводят к однотипным изменениях в полупроводниках при абсорбционных взаимодействиях такие сенсоры обладают низкой селективностью. Селективность сенсоров по отношению к различным газов добиваются путём выбора температурного диапазона детектирования, легированием материала чувствительного элемента каталитически активными добавками, которые могли бы активировать одну реакцию и ингибировать другие, вариация структурой поверхности совместным спеканием различных оксидов и т.д.
Сенсоры на основе мдп-структур
МДП-структуры металлический затвор которых выполнен из каталитически активных переходных металлов (платина, никель, палладий) изменяют свои характеристики под действием содержащихся в атмосфере газов. МДП – металл, диэлектрик, полупроводник.
Существует несколько модификаций сенсоров на МДП-структурах. Для увеличения адсорбционной чувствительности применяют модифицированные МДП-структуры.
Рисунок.
В палладиевом затворе создаются поры диаметром 1.5-2 мкм наличие которых облегчает доступ газообразных частиц к диэлектрику, а так же увеличивает сорбционную поверхность. Перфорированный затвор выполняет роль катализатора, который усиливает ионную диссоциацию ионных газовых частиц. Для увеличения селективности на поверхность металла наносят слой специальных веществ. В качестве диэлектрика у сенсоров на базе МДП-структур может использоваться воздушный зазор, попадая в воздушный зазор между полупроводником и затвором исследуемый газ изменяет диэлектрическую проницаемость воздуха в зазоре, а так же при сорбции на поверхности полупроводника формирует дипольный слой, что приводит к изменению напряжения транзистора. В другом варианте газового датчика с зазором применяют перфорированный сетчатый металлический затвор.
Рисунок.
На слой диэлектриков 1 наносят металлический подслой 2 толщиной требуемого воздушного зазора, на подслой наносится металлический затвор 3 (платина) на котором создаются поры после чего вытравливают участок подслоя над канало между стоком и истоком. Для повышения чувствительности перфорированный затвор покрывают адсорбционным покрытием 4. В этом случае анализируемый газ проникает в полость под затвором и взаимодействуют с его внутренней поверхностью, так же как и с внешней, и боковой покрытых чувствительным слоем. Проблемы селективности решают так же использованием электронных носов, представляющих собой матрицу полупроводниковых сенсоров имеющих различную чувствительность к различным веществам.
Лекция пропущена
Рисунок
На подложке из пьезоэлектрика 1 формируется четыре системы, тонкоплёночных и встречноштырьевых электродов. Подложка должна иметь поверхность отполированную до оптической точности, т.к. неровности вызывают значительные акустические потери. Одна пара электродов 2 служит для инициирования поверхностно акустической волны путём подачи на них переменного напряжения. Сформированная волна распространяется по поверхности пьезоподложки ко второй паре электродов 3, которая служит для детектирования волны и преобразования её в переменный электрический сигнал. В области распространения волны нанесён слой 4 селективно сорбирующий молекулы детектированного вещества, что сопровождается уменьшением скорости распространения поверхносто-акустичекой волны и следовательно частоты колебаний. Электрические сигналы по двум линиям усиливаются усилителем 5 и поступают на счётчик смешанной частоты 6. Разность в частотах пропорциональна количеству сорбированного вещества, а селективность определяется типом используемого чувствительного слоя.