
- •1 Классификация сигналов
- •2. Дельта-функция или функция Дирака.
- •4 Обобщенный ряд Фурье. Базисные функции. Отронормированный базис.
- •5 Функции Уолша и их свойства
- •6 Итегральное преобразование Фурье. Спектральная плотность сигналов и ее свойства.
- •7 Теоремы о спектрах
- •8 Теоремы о спектрах
- •9 Спектры модулированных сигналов
- •10 Автокорреляционная функция сигналов
- •11Взаимокорреляционная функция двух сигналов
- •12Сигналы и векторы.
- •13 Аналитический сигнал.
- •14 Преобразования Гильберта
- •15 Дискретное преобразование Фурье
- •16 Быстрое преобразование Фурье
- •18 Случайные процессы. Ансамбль реализаций.Плотность вероятности и функция распределения.
- •19 Числовые характеристики случайных величин (моментные функции).
- •20 Стационарные и эргодические случайые процессы.
- •21Спектральное представление стационарных случайных процессов. Теорема Винера-Хинчина
- •22Узкополосные случайные сигналы
- •23 Гауссовский случайный процесс. Белый шум и его свойства.
- •24 Воздействие случайных сигналов на линейные стационарные цепи
- •25 Воздействие стационарных случайных сигналов на безынерционные нелинейные цепи
- •30 Комбинационное разделение сигналов
- •26Шумоподобный сигнал
- •27Основы теории многоканальной передачи сообщений
- •28Частотное разделение сигналов
- •29Фазовое и Разделение сигналов по форме
- •31 Система сдма
- •32Постановка задачи оптимального приёма дискретных сообщений.
- •33Критерии качества оптимального приёмника
- •34Алгоритм оптимального приёма при полностью известных сигналах. Когерентный приём
- •35Структурное построение оптимального приёмника
- •36Реализация алгоритма оптимального приёма на основе согласованных фильтров. Свойства согласованного фильтра
- •Помехоустойчивость приема т сигналов, известных точно
- •38Потенциальная помехоустойчивость систем с различными видами манипуляции
- •39Приём сигналов с неопределённой фазой (некогерентный приём)
- •40. Потенциальная помехоустойчивость оптимального приемника двоичных частотно-модулированных сигналов с неизвестной начальной фазой
- •Потенциальная помехоустойчивость оптимального приемника двоичного амплитудно-модулированного сигнала с неизвестной начальной фазой
- •41Потенциальная помехоустойчивость приема дискретных сообщений при замираниях сигнала
- •42 Цифровые фильтры
- •43. Импульсная реакция фильтров.
- •2.4. Частотные характеристики фильтров
- •44 Трансверсальные цифровые фильтры
- •45 Рекурсивный цифровой фильтр
- •48 Вейвлет–преобразование
- •47 Пример синтеза линейных цифровых фильтров
10 Автокорреляционная функция сигналов
Задача корреляционного анализа возникла из радиолокации, когда нужно было сравнить одинаковые сигналы, смещённые во времени.
Для
количественного определения степени
отличия сигнала U(t)
и его смещённой во времени копии
принято вводить автокорреляционную
функцию (АКФ) сигнала U(t),
равную скалярному произведению сигнала
и его сдвинутой копии.
(4.8)
Свойства АКФ
1)
При
автокорреляционная
функция становится равной энергии
сигнала:
(4.9)
2) АКФ – функция чётна
(4.10)
3) Важное свойство автокорреляционной функции состоит в следующем: при любом значении временного сдвига модуль АКФ не превосходит энергии сигнала:
4) Обычно, АКФ представляется симметричной линей с центральным максимумом, который всегда положителен. При этом в зависимости от вида сигнала U(t) автокорреляционная функция может иметь как монотонно убывающей, так и колеблющийся характер.
Например:
АКФ прямоугольного видеоимпульса
АКФ пачки из трёх прямоугольных видеоимпульсов, сдвинутых друг относительно друга на время T.
АКФ бесконечной периодической последовательности видеоимпульсов:
Существует тесная связь между АКФ и энергетическим спектром сигнала.
В
соответствии с формулой (4.8) АКФ есть
скалярное произведение
.
Здесь символом
обозначена
смещённая во времени копия сигнала
.
Обратившись к теореме Планшереля – можно записать равенство:
Спектральная
плотность смещённого во времени сигнала
,
откуда
.
Таким образом приходим к результату
(4.12)
Квадрат модуля спектральной плотности представляет собой энергетический спектр сигнала. Итак энергетический спектр и автокорреляционная функция связаны парой преобразований Фурье.
Ясно что имеется и обратное соотношение
(4.13)
Эти результаты принципиально важны по двум причинам: во-первых оказывается возможным оценивать корреляционные свойства сигналов, исходя из распределения их энергии по спектру. Во-вторых, формулы (4.12), (4.13) указывают путь экспериментального определения энергетического спектра. Часто удобнее вначале получить АКФ, а затем, используя преобразование Фурье, найти энергетический спектр сигнала. Такой приём получил распространение при исследовании свойств сигналов с помощью быстродействующих ЭВМ в реальном масштабе времени.
Часто
вводят удодный числовой параметр –
интервал корреляции
,
представляющий собой оценку ширины
основного лепестка АКФ.
Например:
В
данном случае:
Отсюда:
(4.14)
Интервал корреляции тем меньше, чем выше верхняя граничная частота спектра сигнала. (Чем шире полоса частот сигнала тем уже основной лепесток АКФ.)
АКФ дискретного сигнала
Важнейшая операция при обработке дискретных сигналов состоит в сдвиге такого сигнала на некоторое число позиций относительно исходного положения без изменения его формы. В качестве примера приведём некоторый исходный сигнал (первая строка) и его копии (последующие строки), сдвинутые на 1,2 и 3 позиции в сторону запаздывания.
…………………………..00011110000…………………
…………………………..00001111000…………………
…………………………..00000111100…………………
…………………………..00000011110…………………
Обобщим формулу (4.8), чтобы можно было вычислять дискретный аналог АКФ применительно к многопозиционным сигналам. Операцию интегрирования следует заменить суммированием, а вместо переменной использовать целое число n (положительное или отрицательное), указывающее, на сколько позиций сдвинута копия относительно исходного сигнала. Так как в «пустых»позициях математическая модель сигнала содержит нули, запишем дискретную АКФ в виде:
(4.15)
Эта функция целочисленного аргумента n естественно обладает многими уже известными свойствами обычной АКФ. Так, дискретная АКФ чётна:
(4.16)
При нулевом сдвиге эта АКФ определяет энергию дискретного сигнала:
(4.17)