- •1 Классификация сигналов
- •2. Дельта-функция или функция Дирака.
- •4 Обобщенный ряд Фурье. Базисные функции. Отронормированный базис.
- •5 Функции Уолша и их свойства
- •6 Итегральное преобразование Фурье. Спектральная плотность сигналов и ее свойства.
- •7 Теоремы о спектрах
- •8 Теоремы о спектрах
- •9 Спектры модулированных сигналов
- •10 Автокорреляционная функция сигналов
- •11Взаимокорреляционная функция двух сигналов
- •12Сигналы и векторы.
- •13 Аналитический сигнал.
- •14 Преобразования Гильберта
- •15 Дискретное преобразование Фурье
- •16 Быстрое преобразование Фурье
- •18 Случайные процессы. Ансамбль реализаций.Плотность вероятности и функция распределения.
- •19 Числовые характеристики случайных величин (моментные функции).
- •20 Стационарные и эргодические случайые процессы.
- •21Спектральное представление стационарных случайных процессов. Теорема Винера-Хинчина
- •22Узкополосные случайные сигналы
- •23 Гауссовский случайный процесс. Белый шум и его свойства.
- •24 Воздействие случайных сигналов на линейные стационарные цепи
- •25 Воздействие стационарных случайных сигналов на безынерционные нелинейные цепи
- •30 Комбинационное разделение сигналов
- •26Шумоподобный сигнал
- •27Основы теории многоканальной передачи сообщений
- •28Частотное разделение сигналов
- •29Фазовое и Разделение сигналов по форме
- •31 Система сдма
- •32Постановка задачи оптимального приёма дискретных сообщений.
- •33Критерии качества оптимального приёмника
- •34Алгоритм оптимального приёма при полностью известных сигналах. Когерентный приём
- •35Структурное построение оптимального приёмника
- •36Реализация алгоритма оптимального приёма на основе согласованных фильтров. Свойства согласованного фильтра
- •Помехоустойчивость приема т сигналов, известных точно
- •38Потенциальная помехоустойчивость систем с различными видами манипуляции
- •39Приём сигналов с неопределённой фазой (некогерентный приём)
- •40. Потенциальная помехоустойчивость оптимального приемника двоичных частотно-модулированных сигналов с неизвестной начальной фазой
- •Потенциальная помехоустойчивость оптимального приемника двоичного амплитудно-модулированного сигнала с неизвестной начальной фазой
- •41Потенциальная помехоустойчивость приема дискретных сообщений при замираниях сигнала
- •42 Цифровые фильтры
- •43. Импульсная реакция фильтров.
- •2.4. Частотные характеристики фильтров
- •44 Трансверсальные цифровые фильтры
- •45 Рекурсивный цифровой фильтр
- •48 Вейвлет–преобразование
- •47 Пример синтеза линейных цифровых фильтров
2. Дельта-функция или функция Дирака.
По определению, дельта-функция описывается следующими математическими выражениями (в совокупности):
(t-) = 0 при t ,
(t-)
dt = 1.
Функция (t-) не является дифференцируемой, и имеет размерность, обратную размерности ее аргумента, что следует из безразмерности результата интегрирования. Значение дельта-функции равно нулю везде за исключением точки , где она представляет собой бесконечно узкий импульс с бесконечно большой амплитудой, при этом площадь импульса равна 1.
Дельта-функция является полезной математической абстракцией. На практике такие функции не могут быть реализованы с абсолютной точностью, так как невозможно реализовать значение, равное бесконечности, в точке t = на аналоговой временной шкале. Но во всех случаях, когда площадь импульса равна 1, длительность импульса достаточно мала, а за время его действия на входе системы сигнал на ее выходе практически не изменяется (реакция системы на импульс во много раз больше длительности самого импульса), входной сигнал можно считать единичной импульсной функцией со свойствами дельта - функции.
При своей абстрактности дельта - функция имеет вполне определенный физический смысл. Представим себе импульсный сигнал прямоугольной формы П(t-) длительностью , амплитуда которого равна 1/, а площадь соответственно равна 1. При уменьшении значения длительности импульс, сокращаясь по длительности, сохраняет свою площадь, равную 1, и возрастает по амплитуде. Предел такой операции при 0 и носит название дельта - импульса. Этот сигнал (t-) сосредоточен в одной координатной точке t = конкретное амплитудное значение сигнала не определено, но площадь (интеграл) остается равной 1. Это не мгновенное значение функции в точке t = , а именно импульс (импульс силы в механике, импульс тока в электротехнике и т.п.) – математическая модель короткого действия, значение которого равно 1.
Дельта-функция обладает фильтрующим свойством. Суть его заключается в том, что если дельта-функция (t-) входит под интеграл какой-либо функции в качестве множителя, то результат интегрирования равен значению подынтегральной функции в точке расположения дельта-импульса, т.е.:
s(t) (t-) dt = s().Интегрирование в выражении может ограничиваться ближними окрестностями точки .
3.Понятия мощности и энергии в теории сигналов не относятся к характеристикам каких-либо физических величин сигналов, а являются их количественными характеристиками, отражающими определенные свойства сигналов и динамику изменения их значений (отсчетов) во времени, в пространстве или по любым другим аргументам.
Для произвольного, в общем случае комплексного, сигнала s(t) = a(t)+jb(t), где а(t) и b(t) - вещественные функции, мгновенная мощность (instantaneous power) сигнала по определению задается выражением:
w(t) = s(t) s*(t) = [a(t)+jb(t)] [a(t)-jb(t)] = a2(t)+b2(t) = |s(t)|2, (2.2.1)
т.е. функция распределения мгновенной мощности по аргументу сигнала равна квадрату функции его модуля, для вещественных сигналов - квадрату функции амплитуд.
Аналогично для дискретных сигналов:
wn = sns*n = [an+jbn] [an-jbn] = an2 + bn2 = |sn|2, (2.2.1')
Энергия сигнала (также по определению) равна интегралу от мощности по всему интервалу существования или задания сигнала. В пределе:
Еs= w(t)dt = |s(t)|2dt. (2.2.2)
Es
=
wn
=
|sn|2.
(2.2.2')
Мгновенная мощность w(t) является плотностью мощности сигнала, так как измерения мощности возможны только через энергию на интервалах ненулевой длины:
w()
= (1/t)
|s(t)|2dt
Энергия сигналов может быть конечной или бесконечной. Конечную энергию имеют финитные сигналы и сигналы, затухающие по своим значениям в пределах конечной длительности, которые не содержат дельта-функций и особых точек (разрывов второго рода и ветвей, уходящих в бесконечность). В противном случае их энергия равна бесконечности. Бесконечна также энергия периодических сигналов.
Как правило, сигналы изучаются на определенном интервале Т, для периодических сигналов - в пределах одного периода Т, при этом средняя мощность (average power) сигнала:
WT()
= (1/T)
w(t)
dt= (1/T)
|s(t)|2
dt.
(2.2.3)
Понятие средней мощности может быть распространено и на незатухающие сигналы, энергия которых бесконечно велика. В случае неограниченного интервала Т строго корректное определение средней мощности сигнала должно производиться по формуле:
Ws
=
w(t)
dt. (2.2.3')
Квадратный корень из значения средней мощности характеризует действующее (среднеквадратическое) значение сигнала (root mean sqare, RMS).
Применительно к электрофизическим системам, данным понятиям мощности и энергии соответствуют вполне конкретные физические величины. Допустим, что функцией s(t) отображается электрическое напряжение на резисторе, сопротивление которого равно R Ом. Тогда рассеиваемая в резисторе мощность, как известно, равна (в вольт-амперах):
w(t) = |s(t)|2/R,
а полная выделенная на резисторе тепловая энергия определяется соответствующим интегрированием мгновенной мощности w(t) по интервалу задания напряжения s(t) на резисторе R. Физическая размерность мощности и энергии в этом случае определяется соответствующей физической размерностью функции напряжения s(t) и сопротивления резистора R. Для безразмерной величины s(t) при R=1 это полностью соответствует выражению (2.2.1). В теории сигналов в общем случае сигнальные функции s(t) не имеют физической размерности, и могут быть формализованным отображением любого процесса или распределения какой-либо физической величины, при этом понятия энергии и мощности сигналов используются в более широком смысле, чем в физике. Они представляют собой метрологические характеристики сигналов.
Из сравнения выражений (2.1.2) и (2.2.2) следует, что энергия и норма сигнала связаны соотношениями:
Es
= ||s(t)||2,
||s(t)|| =
(2.2.4)
Пример. Цифровой сигнал задан функцией s(n) = {0,1,2,3,4,5,4,3,2,1,0,0,0,0....}.
Энергия
сигнала: Es
=
s2(n)
= 1+4+9+16+25+16+9+4+1 = 85.
Норма:
||s(n)|| =
9.22
Вычислим энергию суммы двух произвольных сигналов u(t) и v(t)
E = [u(t)+v(t)]2 dt = Eu + Ev + 2 u(t)v(t) dt. (2.2.5)
