- •1 Классификация сигналов
- •2. Дельта-функция или функция Дирака.
- •4 Обобщенный ряд Фурье. Базисные функции. Отронормированный базис.
- •5 Функции Уолша и их свойства
- •6 Итегральное преобразование Фурье. Спектральная плотность сигналов и ее свойства.
- •7 Теоремы о спектрах
- •8 Теоремы о спектрах
- •9 Спектры модулированных сигналов
- •10 Автокорреляционная функция сигналов
- •11Взаимокорреляционная функция двух сигналов
- •12Сигналы и векторы.
- •13 Аналитический сигнал.
- •14 Преобразования Гильберта
- •15 Дискретное преобразование Фурье
- •16 Быстрое преобразование Фурье
- •18 Случайные процессы. Ансамбль реализаций.Плотность вероятности и функция распределения.
- •19 Числовые характеристики случайных величин (моментные функции).
- •20 Стационарные и эргодические случайые процессы.
- •21Спектральное представление стационарных случайных процессов. Теорема Винера-Хинчина
- •22Узкополосные случайные сигналы
- •23 Гауссовский случайный процесс. Белый шум и его свойства.
- •24 Воздействие случайных сигналов на линейные стационарные цепи
- •25 Воздействие стационарных случайных сигналов на безынерционные нелинейные цепи
- •30 Комбинационное разделение сигналов
- •26Шумоподобный сигнал
- •27Основы теории многоканальной передачи сообщений
- •28Частотное разделение сигналов
- •29Фазовое и Разделение сигналов по форме
- •31 Система сдма
- •32Постановка задачи оптимального приёма дискретных сообщений.
- •33Критерии качества оптимального приёмника
- •34Алгоритм оптимального приёма при полностью известных сигналах. Когерентный приём
- •35Структурное построение оптимального приёмника
- •36Реализация алгоритма оптимального приёма на основе согласованных фильтров. Свойства согласованного фильтра
- •Помехоустойчивость приема т сигналов, известных точно
- •38Потенциальная помехоустойчивость систем с различными видами манипуляции
- •39Приём сигналов с неопределённой фазой (некогерентный приём)
- •40. Потенциальная помехоустойчивость оптимального приемника двоичных частотно-модулированных сигналов с неизвестной начальной фазой
- •Потенциальная помехоустойчивость оптимального приемника двоичного амплитудно-модулированного сигнала с неизвестной начальной фазой
- •41Потенциальная помехоустойчивость приема дискретных сообщений при замираниях сигнала
- •42 Цифровые фильтры
- •43. Импульсная реакция фильтров.
- •2.4. Частотные характеристики фильтров
- •44 Трансверсальные цифровые фильтры
- •45 Рекурсивный цифровой фильтр
- •48 Вейвлет–преобразование
- •47 Пример синтеза линейных цифровых фильтров
23 Гауссовский случайный процесс. Белый шум и его свойства.
А)Белый шумявляется стационарным случайным процессом x(t) с постоянной спектральной плотностью Gx(f) = , равной дисперсии значений x(t). Другими словами, все спектральные составляющие белого шума имеют одинаковую энергию (как белый цвет содержит все цвета видимого спектра).
По своему физическому смыслу спектральная плотность - это мощность процесса, которая приходится на 1 Гц полосы частот. Но тогда идеального белого шума на практике не может существовать, так как для него должно было бы выполняться условие:
Rx(0)
=
Gx(f)
df = (2/2)(0)
= ,
(17.4.7)
т.е. мощность белого шума и его дисперсия равны бесконечности, а значения шума не коррелированны для любых || 0, так как корреляционная функция представляет собой идеальный дельта-импульс. Тем не менее многие помехи в радиотехнике, в технике связи и в других отраслях рассматривают как белый шум, если выполняется следующее соотношение между шириной спектров полезных сигналов и шумов
сигнал/Bk.шум<< 1,
и спектральная плотность шумов слабо изменяется в интервале спектра сигнала.
Если частотный диапазон спектра, на котором рассматриваются сигналы и помехи, равен 0-В, то спектральная плотность шума задается в виде:
Gx(f) = 2, 0 f B; Gx(f) = 0, f > B, (17.4.8)
при этом корреляционная функция шума определяется выражением:
Rx() = 2Bsin(2B) / 2B. (17.4.9)
Эффективная шумовая ширина спектра:
Bk = Rx(0)/Gx(f)max = B. (17.4.10)
Эффективное шумовое время ковариации:
Tk=2 |Rx()|d/Rx(0).
Реальное шумовое время ковариации целесообразно определить по ширине главного максимума функции Rx(), в котором сосредоточена основная часть энергии шумов, при этом Tk = 1/В и BkTk = 1, т.е. соотношение неопределенности выполняется.
Как следует из всех этих выражений и наглядно видно на рис. 17.4.4, при ограничении частотного диапазона в шумах появляется определенная ковариация между значениями и чем меньше частотный диапазон шумов, тем больше их радиус ковариации. По существу, ограничение частотного диапазона шумов определенным диапазоном эквивалентно фильтрации белого шума частотным фильтром с соответствующей шириной полосы пропускания, при этом, в полном соответствии с выражением (17.3.7), корреляционная функция импульсного отклика фильтра переносится на шум.
Гауссовский шум возникает при суммировании статистически независимых белых шумов и имеет следующую функцию корреляции:
Спектральная плотность шумов:
Sx(f)
= (a/
)
exp(-f2/22),
- <
f <.
(17.4.13)
Эффективные шумовые ширина спектра и время ковариации:
Bk = /2 = 1.25, Tk = 1/ = 0.4/. (17.4.14)
Соотношение неопределенности превращается в равенство: BkTk = 1/2.
Гауссовские случайные процессыпреобладают в практических задачах. Случайный процесс x(t) называется гауссовским, если для любого набора фиксированных моментов времени tn случайные величины x(tn) подчиняются многомерному нормальному распределению. Плотность вероятностей мгновенных значений x(t) эргодического гауссовского процесса определяется выражением:
(x) = (x )-1 exp(-(x-mx)2/22). (17.4.15)
Среднее значение и его оценка по достаточно большому интервалу Т:
mx
=
xp(x) dx, mx
(1/T)
x(t)
dt.
При нулевом среднем (или при центрировании функции x(t) для упрощения расчетов) дисперсия не зависит от t и равна:
x2 = x2 p(x) dx.
Оценка дисперсии при больших Т:
x2
(1/T)
x2(t)
dt =
Sx(f)
df = 2
Sx(f)
df =
Gx(f)
df. (17.4.16)
Следовательно, плотность вероятностей гауссовского процесса полностью характеризуется спектральной плотностью, по которой можно определить значение дисперсии процесса. На вид спектральных плотностей и соответствующих им ковариационных функций никаких ограничений не накладывается.
