
- •1. Таблетки. Характеристика, классификация таблеток
- •2. Какие технологические характеристики фармацевтических субстанций оказывают влияние на таблетирование и как они определяются?
- •3. Какие требования к таблеткам предъявляет гф рб?
- •4. Прессование. Теоретические основы таблетирования.
- •5. Характеристика таблеточных машин
- •6. Теоретические основы таблетирования
- •8. Влияние вспомогательных веществ на терапевтическую эффективность лс в таблетках.
- •17.Тест «Растворение для твердых лф».
- •9. Прямое таблетирование. Способы и приемы подготовки фарм. Субстанций к прямому таблетированию.
- •10. Тритурационные таблетки. Характеристика. Производство.
- •11. Стадии технологического процесса производства таблеток. Подготовка фарм субстанций и вспомогательных веществ. Смешивание ингредиентов , входящих в состав таблеток.
- •12. Гранулирование. Значение гранулирования. Способы гранулирования: влажное и грануляция прессованием (или прокаткой). Сферизация гранул.
- •13. Аппаратура и оборудование для получения и сушки гранул. Грануляторы-сушилки типа сг-30 и др.
- •14.Опудривание гранулята и прессование.
- •15.Понятие однородность массы для единицы дозированного лс. Однородность содержания действующего в-ва в ед. Дозированного лс.
- •16. Как определяется распадаемость таблеток и нормы распадаемости для обычных таблеток и покрытых оболочками в т.Ч. Кишечно-растворимыми оболочками.
- •17.Тест «Растворение для твердых лф».
- •18. С какой целью таблетки покрывают оболочками?
- •19. Виды таблеточных покрытий?
- •20. Вспомогательные вещества для получения дрожированных , плёночных и прессованных покрытий?
- •21. Технология дражированных , плёночных и прессованных покрытий?
- •22. Способы нанесения пленочных покрытий
- •23. Характеристика драже, гранул, спансул
- •24. Упаковка таблеток
- •25.Лекарственные средства для парентерального применения, их классификация. Инъекции, инфузии, порошки для приготовления инъекций и инфузий, концентраты для приготовления инъекций и инфузий, салфетки.
- •26.Инъекционные лф промышленного производства. Требования нд к лс для парентерального применения.
- •28.Растворители для инъекционных растворов. Деминерализованная вода. Вода очищенная. Вода высокоочищенная. Способы получения: ионный обмен, электродиализ, обратный осмос.
- •29. Получение воды для инъекций в промышленных условиях. Аппаратура. Колонные, термокомпрессионные дистилляторы.
- •30. Неводные растворители и сорастворители. Жирные масла, спирты, эфиры, амиды. Требования, предъявляемые к маслам. Подготовка растительных масел.
- •31. Характеристика ампул. Типы ампул. Состав, технические требования, классы стекла. Исследование гидролитической устойчивости стекла.
- •32. Производство ампул. Подготовка стеклодрота: калибровка, мойка. Выделка ампул на полуавтоматах, отжиг.
- •33. Подготовка ампул к наполнению. Вскрытие ампул. Вакуумная, шприцевая, параконденсационная мойка ампул. Использование ультразвука при мойке дрота и ампул. Сушка и стерилизация.
- •34. Технология растворов для инъекций
- •35. Очистка инъекц. Р-ров. Фильтры.
- •37. Способы стерилизации инъекционных р-ров в ампулах, флаконах, шприц-тюбиках. Термические, Химические, радиационные методы стерилизации. Стерилизация фильтрованием.
- •38. Стабилизация р-ров для инъекций в ампулах. Стабилизаторы. Консерванты. Газовая защита.
- •39. Оценка качества готовой продукции. Проверка целостности ампул после запайки и стерилизации. Понятие стерильной серии, проверка апирогенности, рН растворов, цветности, кол. Содержание действ. В-ва.
- •40. Виды механических загрязнений и причины их наличия в ампулах.
- •41. Этикетировка ампул. Упаковка ампул. Автоматы для упаковки ампул.
- •46. Стерильные суспензии промышленного производства. Суспензии инсулина, кортикостероидов и др.
- •48Порошки для приготовления стерильных растворов, особенности технологии лиофилизированных порошков, расфасовка во флаконы и ампулы .
- •50. Пластыри как лф. Классификация пластырей. Свинцовые и смоляно-восковые пластыри. Каучуковые пластыри
- •51. Пластыри как лекарственная форма. Классификация пластырей. Кожные клеи или жидкие пластыри. Гидрогелевые пластины.
- •52. Производство пластырей. Технологические схемы производства. Характеристика оборудования.
- •53. Глазные лекарственные промышленного производства.
28.Растворители для инъекционных растворов. Деминерализованная вода. Вода очищенная. Вода высокоочищенная. Способы получения: ионный обмен, электродиализ, обратный осмос.
Для производства инъекционных растворов используются водные и неводные растворители. Водные – вода для инъекций, деминерализованная вода, высокоочищенная. Неводные – жирные масла, спирты, макроголы, полиэтиленоксиды.
Деминерализованная( обессоленная) вода получается из водопроводной питьевого качества, предварительно подвергнутой тщательному анализу, т.к. в ней содержится значительное кол-во растворенных и взвешенных веществ. Деминерализация проводится ионным обменом и методами разделения через мембрану. Ионный обмен основан на использовании ионитов – сетчатых полимеров разной степени сшивки, с гелевой или микропористой структурой, ковалентно связанных с ионогенными группами. Диссоциация этих групп в воде или растворах дает ионную пару – фиксированный на полимере ион и подвижный противоион, который обменивается на ионы одноименного заряда из раствора.
Среди методов разделения через мембрану можно выделить: обратный осмос, ультрафильтрацию, диализ, электродиализ, испарение через мембрану. Обратный осмос – гиперфильтрация – переход растворителя из раствора через полупроницаемую мембрану под действием внешнего давления. Избыточное рабочее давление солевого раствора намного больше осмотического. Движущая сила обратного осмоса – разность давлений по обе стороны мембраны. Используют мембраны двух типов – пористые и и непористые диффузионные.
Электродиализ – механизм разделения основан на направленном движении ионов в сочетании с селективным действием мембран под влиянием постоянного тока.
Вода очищенная должна быть максимально химически очищена и отвечать НД. В каждой серии полученной воды проверяют рН (5,0-6,8), наличие восстанавливающих веществ, угольного ангидрида, нитратов, нитритов, хлоридов, сульфатов, кальция, тяжелых металлов. Получаю методом дистилляции, перегонки водопроводной или деминерализованной воды в дистилляционных аппаратах.
29. Получение воды для инъекций в промышленных условиях. Аппаратура. Колонные, термокомпрессионные дистилляторы.
Вода для инъекций - это очищенная вода кот. не содержит пирогенных в-в. Хр. она не более 24 ч в асептических условиях. Вода очищенная должна иметь рН от 5,0 до 7,0, не содержать хлоридов, сульфатов, нитратов, восстанавливающих веществ, кальция, диоксид углерода, тяжелых металлов, нормируется содержание аммиака. В 1 мл воды очищенной не должно быть более 100 микроорганизмов.
К колонным многокамерным аппаратам отн. многоступенчатые аппараты. Установки подобного типа для получения очищенной воды бывают различной конструкции. Чаще всего прим. трехступенчатые колонные аппараты с тремя корпусами (испарителями), расп. вертикально или горизонтально. Особенность колонных аппаратов в том, что только первый испаритель нагревается паром, вторичный пар из первого корпуса поступает во второй в качестве греющего, где конденсируется и получается дистиллированная вода. Из второго корпуса вторичный пар поступает в третий - в качестве греющего, где также конденсируется. Таким образом, дистиллированную воду получают из 2-го и 3-го корпусов. Производительность такой установки до 10 т/ч дистиллята. Качество получаемого дистиллята хорошее, так как в корпусах достаточная высота парового пространства и предусмотрено удаление капельной фазы из пара с помощью сепараторов.
Термокомпрессионный аквадистилятор - питание аппарата осущ. водой деминерализованной, кот. подается в регулятор давления и затем поступает в нижнюю часть конденсатора-холодильника, заполняет его межтрубное пространство, направляется в камеру предварительного нагрева ,а из неё-в трубку испарителя. Здесь предварительно нагретая вода доводится до кипения и образующийся пар откачивается из парового пространства компрессором. В камере испарения создаётся разрежение и закипание воды в трубах при температуре 96 градусов. Вторичный пар в компрессоре сжимается его темпер. повышается до 103-120 градус., затем образуется конденсат, он охлаждается и собирается в сборнике дистиллята. Качество воды очень высокое т. к. капельная фаза испаряется на стенках трубок.