
- •3. Анизотропия кристаллов и его влияние на свойства материалов.
- •4. Дефекты кристаллических решеток.
- •5. Влияние дефектов кристаллических решеток на свойства материалов.
- •6. Виды кристаллических решеток сплава.
- •8. Механические свойства конструкционных материалов.
- •9. Технические свойства конструкционных материалов.
- •10. Литейные сплавы.
- •11. Литейные чугуны.
- •Литейные свойства сплавов.
- •Классификация способов получения отливок.
- •Формовочные и стержневые смеси.
- •Ручная и механическая формовка песчаных смесей.
- •Сборка литейных форм, заливка металлом, выбивка отливок, очистка и т.Д.
- •22. Литье по выплавляемым моделям.
- •Литье в оболочковые формы.
- •Литье в кокиль.
- •25. Литье под давлением.
- •Центробежное литье.
- •Общие принципы конструирования.
- •Сущность процесса обработки материалов давлением.
- •Виды обработки давлением.
- •Прокатка. Виды проката.
- •Волочение.
- •32. Прессование.
- •Штамповка.
- •35.Оборудование для обработки давлением.
- •Физические процессы обработки материалов давлением.
- •Наклеп и условия его формирования.
- •Сущность холодной штамповки, ее преимущества и недостатки.
- •Виды холодной объемной штамповки.
- •Выдавливание.
- •41. Высадка
- •Объемная штамповка (холодная).
- •Холодная листовая штамповка.
- •Разделительные операции при холодной листовой штамповке (резка. Вырубка, пробивка ).
- •Формоизменяющие операции при холодной листовой штамповке.
- •Сущность горячей объемной штамповки.
- •47. Разработка чертежа поковки.
- •48. Горячая объемная штамповка в закрытых штампах.
- •49. Горячая объемная штамповка в открытых штампах.
- •50. Многоручьевая штамповка.
- •51. Понятие о сварке, физико-химические процессы при сварке.
- •52. Сварка давлением.
- •53. Контактная электрическая сварка.
- •54. Конденсаторная сварка.
- •55. Сварка трением.
- •56. Холодная сварка.
- •57. Физико-химические процессы при сварке плавлением.
- •58. Электрическая дуговая сварка.
- •59. Ручная дуговая сварка.
- •60. Автоматическая дуговая сварка под флюсом.
- •61. Сварка в среде защитных газов.
- •62. Электронно-лучевая сварка.
- •63. Лазерная сварка.
- •64. Электрошлаковая сварка.
- •65. Свариваемость металлов и сплавов.
- •66. Дефекты сварных соединений
- •67. Типы сварных соединений
- •72. Геометрические параметры срезаемого слоя при механообработке (на примере обтачивания).
- •Элементы токарного резца.
- •77. Силы резания.
- •78. Источники образования тепла и уравнение теплового баланса при резании.
- •80. Схемы обработки поверхностей при токарной обработке.
- •83. Режущий инструмент для станков сверлильной группы.
- •84. Схемы обработки на станках сверлильной группы.
- •85. Обработка на расточных станках.
- •86. Обработка на фрезерных станках.
- •87. Обработка на шлифовальных станках.
9. Технические свойства конструкционных материалов.
Технологические свойства металлов и сплавов характеризуют их способность поддаваться различным методам горячей и холодной обработки. К основным из них относят литейные свойства, ковкость, свариваемость и обрабатываемость режущим инструментом.
Литейные свойства характеризуют способность металла или сплава заполнять литейную форму, обеспечивать получение отливки заданных размеров и конфигурации без пор и трещин во всех ее частях.
Ковкость — это способность металла или сплава деформироваться с минимальным сопротивлением под влиянием внешней приложенной нагрузки и принимать заданную форму. Ковкость зависит от многих внешних факторов, в частности, от температуры нагрева и схемы напряженного состояния. Свариваемостью называют способность материала образовы¬вать неразъемные соединения с комплексом свойств, обеспечивающих работоспособность конструкции. По степени свариваемости материалы подразделяют на хорошо и ограниченно свариваемые. Свариваемость зависит как от материала свариваемых заготовок, так и от выбранного технологического процесса сварки.
Обрабатываемостью называют свойство металла поддаваться обработке резанием. Критериями обрабатываемости являются режимы резания и качество обработанной поверхности.
10. Литейные сплавы.
Литейные сплавы и их применение. Литейные сплавы получают сплавлением двух или нескольких металлов и неметаллов. Для производства фасонных отливок применяют серые, высокопрочные, ковкие и другие чугуны, углеродистые и легированные стали, сплавы алюминия, магния, меди, титана и др.
Серый чугун (состав в %: 2,8—3,5 С) имеет достаточно высокую прочность, высокую циклическую вязкость, легко обрабатываем и дешев. Недостатком серого чугуна является низкая ударная вязкость и хрупкость. Из серого чугуна изготовляют станины станков, корпуса и крышки редукторов, шкивы и другие отливки.
Высокопрочный чугун (состав в %: 3,2—3,6 С) обладает высокой прочностью, пластичностью, хорошо обрабатывается. Из высокопрочного чугуна получают ответственые тяжелонагруженные детали: коленчатые валы, барабаны шахтных вагонеток, шатуны и др.
Ковкий чугун (состав в %: 2,4—2,8 С) по прочности превосходит серые чугуны и имеет высокую пластичность. Ковкий чугун используют для производства корпусов пневматического инструмента, ступиц, кронштейнов, звеньев цепей и других деталей.
Углеродистые стали (состав в %: 0,12—0,6 С; 0,2—0,5 Si; 0,5—0,8 Мn; до 0,05 Р и до 0,05 S) имеют более высокие механические свойства, чем серый и ковкий чугуны. Углеродистые стали применяют для изготовления различных цилиндров, станин прокатных станов, зубчатых колес и других изделий.
Легированные стали отличаются от углеродистых составом легирующих, т. е. дополнительно добавленных элементов (хром, никель, молибден, титан и др.) или повышенным содержанием марганца и кремния. Легирующие элементы придают стали высокую коррозионную стойкость, жаропрочность и другие специальные свойства. Из легированных сталей получают турбинные лопатки, коллекторы выхлопных систем, различную арматуру и прочие подобные детали.
Алюминиевые сплавы обладают малой плотностью, высокой прочностью и пластичностью, их легко обрабатывать. Наиболее распространены сплавы алюминия с кремнием (силумины), которые обладают повышенной коррозионной стойкостью, хорошей свариваемостью и другими свойствами. Алюминиевые сплавы применяют при производстве блоков цилиндров, корпусов приборов и инструментов и т. п.
Магниевые сплавы обладают малой плотностью, высокой прочностью, хорошей обрабатываемостью. Недостатком магниевых сплавов является низкая коррозионная стойкость. Для повышения механических свойств практически все магниевые сплавы обрабатывают (модифицируют) гексахлорэтаном, мелом и другими веществами. Из магниевых сплавов изготовляют корпуса насосов, приборов и инструментов и другие детали.
Медные сплавы (бронзы и латуни) имеют сравнительно высокие механические и антифрикционные свойства, высокую коррозионную стойкость, хорошей обрабатываемостью. Алюминиевые, магниевые и медные сплавы широко применяют в приборостроении.