- •3. Анизотропия кристаллов и его влияние на свойства материалов.
- •4. Дефекты кристаллических решеток.
- •5. Влияние дефектов кристаллических решеток на свойства материалов.
- •6. Виды кристаллических решеток сплава.
- •8. Механические свойства конструкционных материалов.
- •9. Технические свойства конструкционных материалов.
- •10. Литейные сплавы.
- •11. Литейные чугуны.
- •Литейные свойства сплавов.
- •Классификация способов получения отливок.
- •Формовочные и стержневые смеси.
- •Ручная и механическая формовка песчаных смесей.
- •Сборка литейных форм, заливка металлом, выбивка отливок, очистка и т.Д.
- •22. Литье по выплавляемым моделям.
- •Литье в оболочковые формы.
- •Литье в кокиль.
- •25. Литье под давлением.
- •Центробежное литье.
- •Общие принципы конструирования.
- •Сущность процесса обработки материалов давлением.
- •Виды обработки давлением.
- •Прокатка. Виды проката.
- •Волочение.
- •32. Прессование.
- •Штамповка.
- •35.Оборудование для обработки давлением.
- •Физические процессы обработки материалов давлением.
- •Наклеп и условия его формирования.
- •Сущность холодной штамповки, ее преимущества и недостатки.
- •Виды холодной объемной штамповки.
- •Выдавливание.
- •41. Высадка
- •Объемная штамповка (холодная).
- •Холодная листовая штамповка.
- •Разделительные операции при холодной листовой штамповке (резка. Вырубка, пробивка ).
- •Формоизменяющие операции при холодной листовой штамповке.
- •Сущность горячей объемной штамповки.
- •47. Разработка чертежа поковки.
- •48. Горячая объемная штамповка в закрытых штампах.
- •49. Горячая объемная штамповка в открытых штампах.
- •50. Многоручьевая штамповка.
- •51. Понятие о сварке, физико-химические процессы при сварке.
- •52. Сварка давлением.
- •53. Контактная электрическая сварка.
- •54. Конденсаторная сварка.
- •55. Сварка трением.
- •56. Холодная сварка.
- •57. Физико-химические процессы при сварке плавлением.
- •58. Электрическая дуговая сварка.
- •59. Ручная дуговая сварка.
- •60. Автоматическая дуговая сварка под флюсом.
- •61. Сварка в среде защитных газов.
- •62. Электронно-лучевая сварка.
- •63. Лазерная сварка.
- •64. Электрошлаковая сварка.
- •65. Свариваемость металлов и сплавов.
- •66. Дефекты сварных соединений
- •67. Типы сварных соединений
- •72. Геометрические параметры срезаемого слоя при механообработке (на примере обтачивания).
- •Элементы токарного резца.
- •77. Силы резания.
- •78. Источники образования тепла и уравнение теплового баланса при резании.
- •80. Схемы обработки поверхностей при токарной обработке.
- •83. Режущий инструмент для станков сверлильной группы.
- •84. Схемы обработки на станках сверлильной группы.
- •85. Обработка на расточных станках.
- •86. Обработка на фрезерных станках.
- •87. Обработка на шлифовальных станках.
61. Сварка в среде защитных газов.
При сварке в защитных газах в зону сварочной дуги подается инертный либо нейтральный газ, достаточно надежно защищающий расплавленный и остывающий металл сварного шва от контакта с окружающей атмосферой. В качестве защитных газов наибольшее применение получили инертные газы — аргон и гелий и более дешевый углекислый газ. Иногда применяют смеси двух и более газов. При сварке с защитой инертными газами различают сварку неплавящимся и плавящимся электродами. Сварку неплавящимся вольфрамовым электродом можно проводить либо без применения присадочного материала, либо с присадочным прутком, как правило, для заготовок толщиной свыше 2—3 мм (рис. 42, в). В качестве присадки применяют проволоку, по химическому составу близкую к составу свариваемого металла.
Диаметр проволоки зависит от толщины свариваемых заготовок и колеблется от 0,5 до 3 мм. Защитный газ к месту сварки доставляют в баллонах под давлением. Для снижения давления применяют газовые редукторы. Расход газа обычно составляет 5—15 л/мин. Сварку плавящимся электродом обычно применяют для заготовок толщиной более 8 мм (рис.42, г). В качестве электрода применяют сварочную проволоку состава, близкого к составу свариваемого металла, диаметром 0,5—2 мм. Применение при относительно малых сечениях электродов больших сварочных токов резко увеличивает проплавляющую способность дуги, а также производительность процесса.
62. Электронно-лучевая сварка.
Сущность процесса электронно-лучевой сварки состоит в использовании для нагрева и расплавления свариваемых кромок кинетической энергией потока электронов, движущихся с высокими скоростями в вакууме. В месте соударения электронов со свариваемыми заготовками почти 99% кинетической энергии переходит в тепловую, что сопровождается повышением температуры до 5000— 6000 "С. Кромки заготовок расплавляются и после кристаллизации образуется сварной шов.
объемах и деформацию конструкции. Электронно-лучевая сварка может быть применима для заготовок из всех материалов, а чаще всего из разнородных — например, из металла с керамикой и для соединений заготовок из тугоплавких и химически активных металлов — Nb, Мо, W, Тi, Zr и др.
63. Лазерная сварка.
Создание достаточно мощных квантовых генераторов сделало возможным применение остро фокусированного светового пучка для сварки плавлением — лазерной сварки.
64. Электрошлаковая сварка.
Сущность ее заключается в том, что тепловую энергию, необходимую для расплавления основного и присадочного металлов, дает теплота, выделяемая в объеме шлаковой ванны при прохождении через нее тока. Свариваемые заготовки устанавливают в вертикальном положении снизу к ним приваривают вводную планку а сверху выводные планки С двух сторон подводятся водоохлаждаемые медные ползуны 4. Затем на вводную планку насыпается флюс, подводится электрод 7 и зажигается дуга. Подача электрода производится специальным механизмом подачи 6. В результате расплавления флюса образуется шлаковая ванна 5. После достижения определенной высоты шлаковой ванны дуга вследствие шунтирования тока через ванну гаснет, а проходящий ток нагревает ее до весьма высокой температуры, превосходящей температуру плавления основного и присадочного металлов.
В результате металл электрода и кромки основного металла (рис. 40) оплавляются и расплав стекает на дно, образуя сварочную ванну 8. Металл электрода, проходя через шлак, раскисляется и легируется. Благодаря относительно малой скорости затвердевания происходит более полное удаление газовых пузырей , шлака и других примесей, чем при сварке под флюсом. Рекомендуется применять электрошлаковую сварку для заготовок толщиной 30 мм и более. Практически заготовки любой толщины могут быть сварены за один рабочий ход. Сварной шов в основном формируется из присадочного металла, поэтому при сварке
заготовок большой толщины процесс ведут не одним, а сразу двумя или тремя электродами, кроме того, в сварочную ванну дополнительно вводят стальную крупку или рубленую проволоку. Электрошлаковая сварка является высокопроизводительным легко автоматизируемым процессом, ее применяют преимущественно при изготовлении заготовок из стали, чугуна, меди, алюминия, титана.
а – схема процесса; б— схема сварочной
ванны
