
- •Нижегородский государственный университет им. Н.И. Лобачевского
- •1.Предисловие
- •2.Замечания по терминологии
- •3.Кибернетика и информатика
- •4.Предпосылки информатики
- •4.1.Мечта человека об искусственном человеке
- •4.2.Усилители физической и умственной деятельности человека
- •4.3.Ключевые проблемы информатики
- •5.Формализация естественного языка как средства общения.
- •6.Формализация физических характеристик среды обитания
- •6.1.Дискретные и непрерывные множества
- •6.2. Понятия измерительной шкалы, числа и измерения
- •6.3.Натуральное число
- •6.4.Позиционная система счисления
- •6.5.Натуральная числовая прямая
- •6.6.Целые числа (положительные и отрицательные)
- •6.7.Вещественные числа
- •7.Формализация физических зависимостей
- •7.1.Функции
- •7.2.Элементарные функции
- •7.3.Элементарная алгебра, аналитические и численные вычисления
- •8.Аналоговые и цифровые вычислители
- •9.Простейшие вычислители
- •9.1.Аналоговые вычислительные линейки
- •9.2.Цифровой абак и русские счеты
- •9.3.Цифровые механические арифмометры
- •9.4.Хронология событий.
- •10.Аналитические машины Чарльза Беббиджа.
- •11.Формализация рассуждений
- •11.1.Логика рассуждений
- •11.2.Логические функции и алгебра логики
- •11.3.Алгебра логики и алгебра релейно - контактных схем
- •12.Накануне компьютерной эры
- •12.1. Зарождение цифровых систем управления
- •12.2.Перфокарточные сортировальные машины
- •12.3.Методология моделирования
- •13.Теоретические модели вычислений
- •13.1.Алгоритм и его свойства
- •13.2.Проблема слов в ассоциативном исчислении
- •13.3.Нормальный алгоритм Маркова
- •13.4.Рекурсивные функции
- •13.5.Машина Тьюринга
- •13.6.Равнодоступная адресная машина
- •14.Пионеры зарубежной компьютеризации
- •15.Становление информатики в России. Борьба за признание
- •16.Два типа электронных вычислительных машин
- •16.1.Аналоговая вычислительная машина (авм)
- •16.2.Цифровая электронная вычислительная машина (компьютер, эвм)
- •16.3.Аналог или цифра
- •17.Пионеры отечественной компьютеризации
- •18.Становление информатики в России. Начальный период
- •19.Оригинальные отечественные серийные эвм (компьютеры)
- •19.1.Эвм Стрела
- •Элементная база
- •Программное обеспечение
- •Описание машины
- •Технико-эксплуатационные характеристики
- •Особенности эвм
- •19.2.Семейство эвм "м-20"
- •Структура эвм
- •Элементная база
- •Программное обеспечение
- •Технико-эксплуатационные характеристики
- •Особенности машины
- •Об использовании эвм м-20
- •Описание машины
- •Элементная база
- •Программное обеспечение
- •Технико-эксплуатационные характеристики
- •Особенности эвм
- •19.3.Семейство эвм "бэсм"
- •19.3.1.Бэсм-1
- •Структура эвм
- •19.3.2.Бэсм-2
- •Структура эвм
- •19.3.3.Бэсм-4
- •Структура эвм
- •Элементная база
- •Программное обеспечение
- •Технико-эксплуатационные характеристики
- •19.4.Семейство эвм "Минск"
- •19.4.1.Минск-1
- •19.4.2.Минск-2
- •19.4.3.Минск -22
- •19.4.4.Минск-23
- •19.4.5.Минск-32
- •Описание машины
- •Программное обеспечение
- •Технико-эксплуатационные характеристики
- •Особенности эвм
- •19.5.Семейство эвм "Урал"
- •19.5.1.Урал-1, Урал-2, Урал-3, Урал-4
- •Описание машины
- •Элементная база
- •Программное обеспечение
- •Основные эксплуатационно-технические данные
- •Особенности эвм
- •19.5.2.Урал-11, Урал-14, Урал-16
- •Описание машины
- •Элементная база
- •Программное обеспечение.
- •Основные эксплуатационно-технические данные машины “Урал-11”
- •Особенности эвм
- •19.6.Эвм "Весна" и "Снег"
- •19.7.Эвм бэсм-6
- •Описание машины
- •Элементная база
- •Программное обеспечение
- •Технико-эксплуатационные характеристики
- •Особенности машины
- •19.8.Многопроцессорные вычислительные комплексы "Эльбрус"
- •Описание машины.
- •Элементная база
- •Программное обеспечение
- •Типовые комплектации
- •Производительность
- •19.9.Управляющие эвм
- •20.Эволюция элементарной базы и поколения эвм
- •20.1.Базисные логические элементы
- •20.2.Элементы регистровой памяти
- •20.3.Элементы памяти на магнитных сердечниках.
- •20.4.Интегральные схемы
- •20.5.Поколения эвм
- •21.Американская система ibm-360
- •22.Семейство Ряд "ес эвм"
- •22.1.Хронология создания
- •22.2.Ес эвм. Крупнейший промах или всеобщее счастье?
- •23.Автоматизация программирования
- •23.1.От двоичных кодов к ассемблерам - языкам символьного кодирования
- •Ассемблеры
- •Программы - загрузчики
- •23.2.Языки программирования высокого уровня
- •23.3.Трансляция программ
- •24.Первые компьютеры Сарова
- •25.Начало компьютеризации Нижегородского госуниверситета
- •26.Они были первыми
- •26.1.Конрад Цузе
- •26.2.А лан Тьюринг
- •26.3.Джон Маулчи и Джон Эккерт
- •26.4.Джон фон Нейман
- •26.5.А ксель Берг
- •26.6.В иктор Глушков
- •26.7.Сергей Лебедев
- •26.8.Исаак Брук
- •26.9.Николай Матюхин
- •26.10.Михаил Карцев
- •26.11.Юрий Базилевский
- •26.12. Башир Рамеев
- •26.13.Георгий Лопато
- •26.14. Всеволод Бурцев
- •27.Приложения
- •27.1.Основные черты кибернетики
- •27.1.1.Общенаучное значение кибернетики
- •27.1.2.Электронные счетные машины и нервная система
- •27.1.3.Прикладное значение кибернетики
- •27.2."Сигнал" Игоря Полетаева
- •27.3.Хронология компьютеростроения
- •Литература
- •Оглавление
17.Пионеры отечественной компьютеризации
Из книги: Малиновский Б.Н. История вычислительной техники в лицах. – К. фирма "КИТ", ПТОО "А.С.К.", 1995 http://www.computer-museum.ru
Борис Николаевич Малиновский родился 24 августа 1921 г. в Ивановской области в семье учителя. Известный специалист в области вычислительной техники, член-корреспондент Национальной академии наук Украины, лауреат Государственной премии Украины. Участник Великой Отечественной войны. Прошел боевой путь от солдата до командира артиллерийской батареи. Дважды ранен. Награжден пятью орденами.
В 1835 году английский ученый Чарльз Беббидж, завершая работу над проектом вычислительной машины, которую он назвал аналитической, в письме на имя президента Королевской академии наук в Брюсселе писал: "Я сам удивляюсь могуществу составляемой мной машины".
Ученый имел в виду область вычислений. Предвидеть другие применения своего детища он не мог по простой причине машина Беббиджа хотя и была по принципам построения и имевшимся в ней устройствам подобна появившимся более века спустя цифровым электронным вычислительным машинам, но оставалась механической. Это превращало ее в огромное скопище зубчатых ' колес, рычагов и других деталей, привести в движение которые мог лишь паровой двигатель. Гениальный ученый опередил время. Ему пришлось отказаться от мысли построить действующую машину. Великое изобретение было забыто. О нем вспомнили более чем через сто лет, когда была создана цифровая электронная вычислительная машина с программным управлением ЭНИАК (Мочли и Экерт, США, 1946 г.).
Вторая половина нашего века подарила человечеству целый фейерверк замечательных достижений в области цифровой электронной вычислительной техники. Ее становление и развитие шло необыкновенно быстрыми темпами. Кем-то образно сказано: если бы летательные аппараты совершенствовались так же быстро, как развивались ЭВМ, то через две недели после полета братьев Райт человек мог бы полететь на Луну.
Такие грандиозные темпы развития объясняются громадной потребностью современного человеческого общества в мощных технических средствах автоматизации интеллектуального труда, связанного в первую очередь с обработкой информации.
В настоящее время информация стала своеобразным "сырьем" для производства множества "продуктов": новых знаний, управленческих решений, научных прогнозов, статистических сведений, всевозможных рекомендаций, заключений и т.д. и тл. Небезынтересно отметить, что в отличие от физического сырья (полезных ископаемых и др.) информация по мере использования (обработки) не только не исчезает, но наоборот, пополняется новой, являя собой постоянно расширяющуюся "сырьевую" базу интеллектуального труда.
Современными успехами компьютеризации и информатизации мировое сообщество обязано миллионам тружеников - ученым, инженерам, рабочим, создавшим современные ЭВМ, их программное обеспечение, мощные информационные сети.
Однако тех, кто закладывал фундамент компьютерной науки и техники, было не так уж много. На их долю выпало самое трудное - создать то, чего еще никогда не было. Среди них были ученые, инженеры и математики многих стран. Вторая мировая и последовавшая за ней "холодная" войны привели к разобщению ученых и секретности работ, поскольку ЭВМ создавались в первую очередь в военных целях.
В результате первое время имена творцов вычислительной техники были известны лишь специалистам.
Автор имел счастье быть свидетелем и участником становления и развития цифровой электронной вычислительной техники в СССР, общался с выдающимися учеными в этой области: СА. Лебедевым, АА. Дородницыным, И.С Бруком, ЮЛ Базилевским, RM. Глушковым, БЛ Рамеевым, IUL Манохиным, МА. Карцевым, ИЛ. Акушским, ГЛ. Лопато, MJC Сулимом, Ш1 Брусенцовым, ВА. Мельниковым, RC. Бурцевым и др.
В трудное послевоенное время усилия этих людей и коллективов, в которых они работали, вывели СССР в число мировых лидеров компьютеростроения. К великому сожалению, в годы застоя лидерство было утеряно. Вряд ли можно обвинять в этом учеников, сменивших своих славных учителей. Сегодня уже очевидно, что на то были более весомые причины. Вместе с тем следует признать, что основоположники вычислительной техники были поистине замечательными людьми, и достигнутые ими успехи явились в значительной степени следствием их блистательных творческих способностей, высоких человеческих качеств и понимания огромной роли новых технических средств в развитии человеческого общества.
Разработка ЭВМ в трудные послевоенные годы, в кратчайшие сроки была подвигом, и он достоин памяти так же, как и великие достижения в области создания спутников, ракет, атомных реакторов, о чем много творилось и писалось (без упоминания об огромной роли ЭВМ в выполнении этих работ).
Тому, кто не был свидетелем первых шагов зарождавшейся цифровой электронной вычислительной техники, следует напомнить, что в отличие от обычных для того времени радиотехнических устройств, самые сложные из которых насчитывали десяток-другой электронных ламп, при переходе к ЭВМ счет пошел на тысячи. Даже если не вдумываться о стоимости только электронных ламп и многих тысяч радиодеталей (конденсаторов, сопротивлений и др.), то уже само их размещение на громоздких щитах и в металлических шкафах становилось проблемой. Первые ЭВМ занимали просторные залы и выглядели
так, как смотрятся сейчас громадные, многометровой длины пульты управления крупными энергоблоками или энергосистемами.
Требовался громадный инженерный опыт, чтобы быть уверенным в возможности слаженной работы такого количества радиоламп, сопротивлений, конденсаторов, соединенных сотнями тысяч паек и разъемных контактов. Только у одной лампы восемь ножек для подключения в электрическую схему! А если их тысячи? Не случайно постройка ЭВМ в те времена воспринималась большинством авторитетных специалистов как безумство или безграмотная техническая авантюра. Возможно, именно отсюда появилось недоверие к новой науке - кибернетике, взявшей на вооружение цифровую вычислительную технику. Уж очень далеки были первые ЭВМ от огромных возможностей человеческого мозга
Нашим молодым современникам, вооруженным изящными персоналками, трудно поверить, что те многотонные динозавры из многих тысяч ламп аппетитом в десятки киловатт, которые своим появлением на рубеже 50-х годов открывали эру современной вычислительной техники, сооружали совсем небольшие, как правило, молодежные коллективы, причем в очень короткие сроки. Царившая в них атмосфера созидания (а не простого повторения кем-то чего-то достигнутого, что характерно для последующих лет) творила чудеса!
Утвердившийся сейчас дух материальной заинтересованности заменяло огромное счастье созидать новые фантастически перспективные технические средства, возможность видеть зримые и очень весомые плоды своего труда, страстное желание опередить соперников.
Несмотря на огромные человеческие и материальные потери в годы Великой Отечественной войны, для первых десятилетий после ее окончания характерен огромный всплеск энергии и энтузиазма среди населения СССР. Советский Союз в те годы по темпам развития опережал все страны мира, за исключением Японии. Молодежь и зрелые специалисты, пришедшие в науку после тяжелых испытаний на фронте и в тылу, трудились с огромной самоотдачей, подстать замечательным руководителям научных коллективов, таким как С.А. Лебедев, И.С. Брук, Б.И. Рамеев, В.М. Глушков и др.
Следует отметить, что становление и развитие вычислительной техники в СССР шло в послевоенные годы в условиях отсутствия контактов с учеными Запада: разработка ЭВМ за рубежом велась в условиях секретности, поскольку первые цифровые электронные машины предназначались, в первую очередь, для военных целей.
Вычислительная техника в СССР в этот период шла своим собственным путем, опираясь на выдающиеся научные результаты отечественных ученых.
С именами основоположников цифровой электронной вычислительной техники связаны исторически важные события:
- организация первой в СССР вычислительной лаборатории, прообраза будущих вычислительных центров (И.Я. Акушский, 1941);
- разработка первого в СССР проекта цифровой электронной вычислительной машины (И.С. Брук, Б.И. Рамеев, август 1948 г.);
- обоснование принципов построения ЭВМ с хранимой в памяти программой, независимо от Джона фон Неймана (СА. Лебедев, октябрь-декабрь 1948 г.);
- регистрация первого в СССР свидетельства об изобретении цифровой ЭВМ (И.С. Брук, Б.И. Рамеев, декабрь 1948 г.);
- первый пробный пуск макета малой электронной счетной машины МЭСМ (С.А. Лебедев, ноябрь 1950 г.);
- приемка Государственной комиссией МЭСМ - первой в СССР и континентальной Европе ЭВМ, запущенной в регулярную эксплуатацию (С.А. Лебедев, декабрь 1951 г.);
- завершение отладки и запуск в эксплуатацию первой в Российской федерации ЭВМ М-1 (ИС. Брук, Н.Я. Матюхин, январь 1952 г.);
- выпуск первых в СССР промышленных образцов ЭВМ (Ю.Я. Базилевский, Б.И. Рамеев, 1953 г., ЭВМ "Стрела");
- создание самых производительных в Европе (на момент ввода в эксплуатацию) быстродействующих электронных вычислительных машин: БЭСМ (апрель 1953 г.), М-20 (1958 г.) и БЭСМ-6 (1967 г.) С.А. Лебедев, (М.К. Сулим, ВА. Мельников);
- ввод в эксплуатацию СЭСМ - первого в Союзе матрично-векторного процессора (С.А. Лебедев, З.Л. Рабинович, январь 1955 г.);
- разработка первых в СССР универсальных ЭВМ общего назначения "Урал-7", "Урал-2", "Урал-3", "Урал-4" (Б.И. Рамеев, 50-е гг.);
- создание первого в Советском Союзе семейства программно и конструктивно совместимых универсальных ЭВМ общего назначения "Урал-11", "Урал-14", "Урал-16" (Б.И. Рамеев, В.И. Бурков, А.С. Горшков, 60-е гг.);
- разработка и серийный выпуск первых в СССР малых универсальных ЭВМ М-3 и "Минск-1" (И.С. Брук, Н.Я. Матюхин, Г.П. Лопато - 1956-1960 гг.);
- создание первой и единственной в мире троичной ЭВМ "Сетунь" (П. П. Брусенцов, 1958 г.);
- создание первой (и, вероятно, единственной в мире) суперпроизводительной специализированной ЭВМ с использованием системы счисления в остатках (И.Я. Акушский, 1958 г.);
- разработка теории цифровых автоматов (В.М. Глушков, 1961 г.);
- предложена идея схемной реализации языков высокого уровня (В.М. Глушков, ЗЛ. Рабинович, 1966 г.);
- разработка первых в СССР машин для инженерных расчетов "Проминь" и МИР предвестников будущих персональных ЭВМ (В.М. Глушков, С. Б. Погребинский, 1959-1965 гг.);
- создание первой в СССР полупроводниковой управляющей машины широкого назначения "Днепр" (В.М. Глушков, Б.Н. Малиновский, I960 г.);
- применение впервые в СССР микропрограммного управления в ЭВМ (Н.Я. Матюхин, ЭВМ "Тетива", 1961 г.);