
- •Технологическое оборудование учебно-методический комплекс
- •Содержание
- •Введение
- •Цели и задачи дисциплины Цель преподавания дисциплины
- •Задачи изучения дисциплины
- •Рабочая программа
- •Лекционный курс Введение ( 2 часа )
- •Основы кинематики станков ( 8 часов)
- •Механизмы станков (8 часов)
- •Станки общего назначения (20 часов)
- •Зубо- и резьбообрабатывающие станки (8 часа)
- •Станки с чпу (8 часов)
- •Промышленные роботы и роботизированные технологические комплексы (4 часа)
- •Станки для электрофизической и электрохимической обработки (4 часа)
- •Лабораторные занятия
- •Методика изучения основных разделов дисциплины Введение в станковедение
- •Основы кинематики металлорежущих станков
- •Изучение кинематической структуры металлорежущих станков
- •1 Об. Заготовки (в2 ± в4) → z/k∙(1±s/t), об. Фрезы (в1),
- •1 Об. Заготовки → s мм продольного перемещения фрезы.
- •Конснект лекций
- •1.1. Краткий экскурс развития станкостроения
- •1.2. Замечательные изобретения и пионерные научные решения
- •1.2.1 Замечательные изобретения средневековья
- •1.2.2. Пионерные научные решения
- •1.3.Классификация металлорежущих станков
- •1.3.1. По технологическому признаку
- •1.3.2. По степени точности
- •1.3.3. По универсальности
- •1.3.4. Система обозначения станков
- •1.4. Технико-экономические показатели современных станков
- •1.4.1. Эффективность
- •1.4.2. Производительность
- •1.4.3. Надежность
- •1.4.4.Гибкость
- •1.4.5.Точность
- •2. Основы кинематики металлорежущих станков
- •2.1. Формообразование поверхностей
- •2.1.1. Методы воспроизведения производящих линий
- •2.1.2. Образование поверхностей
- •2.1.3. Классификация движений в станках
- •2.2. Понятие о кинематической группе
- •2.3. Кинематическая структура станка
- •2. 4. Теоретические основы настройки станков
- •1 Оборот червячной фрезы → k/z оборота заготовки,
- •Расчетные перемещения внутренних связей
- •1 Оборот распределительного вала (рв) → zi /z оборотов заготовки,
- •Расчетные перемещения для цепей подач
- •1 Двойной ход долбяка → поворота долбяка.
- •2.5. Механические органы кинематической настройки
- •2.5.1. Шестеренчатые коробки скоростей
- •2.5.2. Гитары сменных зубчатых колес
- •2.5.3. Механизмы для бесступенчатого изменения скорости
- •2.5.4.Реверсивные механизмы
- •2.5.5. Суммирующие механизмы
- •2.5.6. Механизмы обгона
- •2.5.7. Механизмы периодического движения
- •2.5.8. Предохранительные устройства
- •3. Изучение кинематической структуры металлорежущих станков
- •3.1. Группа токарных станков
- •3.1.1. Токарно-винторезные станки
- •1 Оборот шпинделя → sпрод перемещения каретки (п2).
- •1 Оборот шпинделя → sпоп перемещения поперечного суппорта (п4).
- •1 Оборот шпинделя (в1) → t перемещения каретки (п2),
- •3.1.2. Токарно-револьверные станки
- •1 Оборот шпинделя → sпрод.. Мм перемещения суппорта (п1).
- •1 Оборот шпинделя → sкр. Мм перемещения револьверной головки (п3).
- •3.1.3. Токарно-карусельные станки
- •1 Оборот планшайбы → sв мм вертикального перемещения
- •1 Оборот планшайбы → sг мм горизонтального перемещения
- •3.2. Станки сверлильно-расточной группы
- •3.2.1. Сверлильные станки
- •3.2.2. Расточные станки
- •1 Оборот шпинделя (в1) → t мм осевого перемещения шпинделя (п8).
- •3.3. Станки фрезерной группы
- •3.4. Шлифовальные и доводочные станки
- •3.4.1. Круглошлифовальные станки
- •3.4.2. Внутришлифовальные станки
- •3.4.3. Плоскошлифовальные станки
- •3.4.4. Бесцентрово-шлифовальные станки
- •3.4.5. Доводочные станки
- •3.5. Станки строгально-протяжной группы
- •3.5.1. Строгальные станки
- •36/48 → М4 → тв X → поперечная каретка стола б (п3).
- •3.5.2. Протяжные станки
- •3.6. Группа станков для обработки зубчатых колес
- •3.6.1. Фасонное зубофрезерование зубчатых колес
- •1/Z об. Шпинделя → n (zф – z) / zф ∙z дополнительного поворота лимба.
- •1 Об. Рукоятки 4 → 1/z поворота шпинделя.
- •3.6.2. Зубофрезерные станки
- •1 Об. Фрезы (в1) → k/z об. Заготовки (в2),
- •1 Об. Заготовки → sв перемещения фрезы (п3),
- •1 Об. Стола → sр перемещения стойки суппорта (п7),
- •1 Об. Заготовки → sо перемещения фрезы (п5),
- •1 Об. Заготовки (в1) → об. Фрезы (в2),
- •1 Об. Заготовки → об. Фрезы (в2).
- •3.6.3. Зубодолбежные станки
- •1 Дв. Ход долбяка → sкр/π m z об. Долбяка.
- •1 Дв. Ход долбяка → sкр мм перемещения по дуге,
- •3.6.4. Станки для зуботочения цилиндрических зубчатых колес
- •3.7. Станки для чистовой обработки зубчатых колес
- •3.7.1. Зубошевинговальные станки
- •1,45 П мм перемещения шток-рейки → sр мм/ход стола (п3).
- •3.7.2. Зубошлифовальные станки
- •1 Об. Заготовки (в4) → πmz мм перемещения каретки (п3),
- •1 Об. Абразивного червяка (в1) → k/z об. Шлифуемого колеса (в2).
- •1 Об. Абразивного червяка (в1) → z/k (1 ± sв/t) об. Шлифуемого колеса (в2±в4),
- •3.8. Станки для обработки конических зубчатых колес
- •1 Об. Люльки (в3) → zп/z об. Заготовки (в2).
- •1 Об. Распределительного вала → (nМ/60) tц об. Электродвигателя.
- •1Об. Распределительного вала → zi/z об. Заготовки.
- •3.9. Станки для обработки резьбы
- •3.9.1. Резьбофрезерные станки
- •1 Об. Шпинделя заготовки (в2) → s мм перемещения суппорта фрезы (п3).
- •57/38 → 29/26 → 15/15 → 30/30 → Кулачок 6 (п4).
- •1 Оборот заготовки → t мм. Перемещения фрезы,
- •1 Об. Заготовки (в3) → t мм перемещения суппорта фрезы (п4).
- •1 Об. Шпинделя 1 заготовки → s мм перемещения суппорта фрезы (п4).
- •3.9.2. Резьбонакатные станки
- •3.9.3. Резьбошлифовальные станки
- •1 Об. Шпинделя заготовки (в2) → t мм премещения суппорта (п3).
- •1 Об. Кулачка врезания 3 → п об. Шпинделя заготовки.
- •3.10.Токарные автоматы и полуавтоматы
- •3.10.1. Классификация станков - автоматов и полуавтоматов
- •3.10.2. Многорезцовые полуавтоматы
- •3.11. Станки с числовым программным управлением
- •3.11.1. Поколения станков с чпу
- •3.11.2. Технологические особенности станков с чпу
- •3.11.3. Конструктивные особенности станков с чпу
- •3.11.4. Станки с чпу первого поколения
- •3.11.5. Многооперационные станки с чпу
- •3.12. Промышленные роботы
- •3.12.1. Поколения промышленных роботов
- •3.12.2. Роботизированные технологические комплексы
- •3. 13. Агрегатные станки
- •3.13.1. Типовые унифицированные компоновки
- •3.13.2. Силовые узлы
- •3.13.3. Гидропанели
- •3.13.4. Шпиндельные узлы
- •3.14. Станки для электрофизической и электрохимической обработки
- •3.14.1. Электроэрозионные станки
- •3.14.2. Комбинированные схемы обработки
- •3.14.3. Лазерное оборудование
- •3.14.4. Раскрой листового материала струей жидкости
- •Вопросы к экзамену
- •Организация рейтингового контроля
- •Словарь специфических терминов
- •Литература Основная
- •Дополнительная
- •Методическая
1 Об. Заготовки (в3) → t мм перемещения суппорта фрезы (п4).
УКЦ:
t = 1 i02 i∑ ix tТВ.
ФН:
ix = t/i02 i∑ tТВ,
где i02 – произведение передаточных отношений постоянных передач расчетной цепи; i∑ - передаточное отношение дифференциала; tТВ – шаг тягового вала.
Орган настройки is. Это гитара сменных колес.
РП:
1 Об. Шпинделя 1 заготовки → s мм перемещения суппорта фрезы (п4).
УКЦ:
s = 1 i03 i∑ is tТВ.
ФН:
is = s/i03 i∑ tТВ,
где i03 - произведение передаточных отношений постоянных передач расчетной цепи; i∑ - передаточное отношение дифференциала; tТВ – шаг тягового вала.
3.9.2. Резьбонакатные станки
Накатывание резьб получило широкое распространение в крупносерийном производстве. Накатанные резьбы по сравнению с нарезанными вследствие уплотнения поверхностного слоя обладают большей усталостной прочностью и долговечностью. Процесс накатывания резьб более производителен чем резьбофрезерование, а кинематика накатных станков существенно проще кинематики резьбофрезерных станков. Накатывание наружной резьбы на деталях выполняют двумя плоскими резьбовыми плашками, резьбовыми роликами, резьбовым роликом и неподвижной сегментной плашкой.
При накатывании резьбы плоскими плашками (рис. 3.86, а), на рабочей поверхности которых выполнены развернутые витки резьбы, одна плашка совершает поступательно-возвратное движение относительно неподвижной плашки. Длина хода подвижной плашки зависит от диаметра накатываемой резьбы и устанавливается так, чтобы за один прямой ход плашки заготовка сделала один оборот, во время которого происходит формообразование резьбы.
При накатывании резьбы двумя роликами (рис. 3.86, б), которым сообщают вращение в одинаковом направлении и одному из них принудительное перемещение в радиальном направлении. Формообразование резьбы происходит за несколько оборотов заготовки и один двойной ход подвижного в радиальном направлении ролика.
Рис. 3.86. Основные схемы накатывания резьбы
При накатывании резьбы роликом и сегментной плашкой (рис. 3.86, в) рабочее вращательное движение получает ролик. Полное формообразование резьбы на заготовке происходит во время прокатывания заготовки между роликом и сегментной плашкой. В процессе накатывания заготовка сделает несколько оборотов вокруг своей оси.
Наиболее производительно накатывание резьбы плашками. При накатывании роликами получают более точные резьбы. Поэтому накатывание резьб роликами получило широкое распространение, в том числе, в инструментальном производстве при накатывании резьбы на метчиках.
Универсальный резьбонакатной полуавтомат модели 5933. Предназначен для наружного накатывания метрических и дюймовых резьб двумя накатными роликами в крупносерийном производстве.
Техническая характеристика. Диаметр накатываемой резьбы 6 – 30 мм; максимальная длина резьбы 40 мм; максимальный шаг резьбы 2,5 мм. Можно накатывать правые и левые резьбы.
Рис. 3.87. Кинематическая схема резьбонакатного станка модели 5933
При накатывании резьбы накатываемая деталь устанавливается на ножевой опоре между накатными роликами.
Кинематическая структура станка (рис. 3.87) содержит две простые кинематические группы: скорости накатывания (аналог скорости резания) Фv(В1) и радиальной подачи на высоту витка резьбы (аналог подачи врезания) Врs (П2).
Особенностью группы Фv, является то, что ее исполнительным органом является накатываемая деталь. В результате внутреннюю связь группы можно представить в виде:
ножевая опора → накатываемая деталь.
Внешняя связь:
М → (100/375)→iv=а/б→(18/55)→шпиндель 1→ ведущий ролик→
↓ ↓
(28/28)→шпиндель2 → ведомый ролик → деталь (В1).
Группа настраивается на траекторию (шаг накатываемой резьбы) – установкой накатных роликов соответствующего шага; на скорость – гитарой iv = а/б; на направление (накатывание правой или левой резьбы) – установкой накатных роликов соответствующего направления винтовой нарезки.
Группа Врs (П2). Ее внутренняя связь:
направляющие станины станка → подвижная бабка.
Внешняя связь:
М → (100/375) → iv = а/в → (18/55) → (28/28) → is = а1/б1 → червячная передача → кулачок 3 → подвижная бабка (П2).
Группа настраивается на скорость – гитарой is; на путь – кулачком 3; на исходное положение – изменением положения кулачка 3 на станине.
Гитара iv.
РП:
пМ мин-1 электродвигателя → пр мин-1 накатных роликов.
УКЦ:
пр = 1420(iv = а/б) (100/375) (18/55).
ФН:
iv = а/б = пр/125.
Набором сменных зубчатых колес гитары можно регулировать частоту вращения роликов в пределах 39 – 265 мин-1.
Гитара is. Круговая частота вращения кулачка устанавливается в зависимости от времени накатывания резьбы, т.е. от времени цикла обработки. Скорость вращения кулачка постоянна.
Следовательно, РП для гитары:
(пр/60) tц об. накатных роликов → 1об. кулачка 3.
УКЦ:
1 = (пр/60) tц (28/28) (is = (а1/б1)) iчп,
ФН:
is = с1/nр tц,
где с1 = 60/iчп; iчп – передаточное отношение червячной передачи; tц – время цикла накатывания резьбы, сек.
При наладке станка необходимо вершины резьб накатных роликов сместить относительно друг друга на половину шага. Это достигается поворотом одного из шпинделей при разомкнутой кулачковой муфте, расположенной на шпинделе 1. Муфта имеет 100 зубъев, следовательно, при повороте на один зуб вершины резьбы сместятся на величину 0,01 шага резьбы.
Цикл накатывания резьбы осуществляется за один оборот кулачка 3. При накатывании резьбы деталь вывинчивается из зоны обработки с самоподачей, равной шагу резьбы.