
- •Технологическое оборудование учебно-методический комплекс
- •Содержание
- •Введение
- •Цели и задачи дисциплины Цель преподавания дисциплины
- •Задачи изучения дисциплины
- •Рабочая программа
- •Лекционный курс Введение ( 2 часа )
- •Основы кинематики станков ( 8 часов)
- •Механизмы станков (8 часов)
- •Станки общего назначения (20 часов)
- •Зубо- и резьбообрабатывающие станки (8 часа)
- •Станки с чпу (8 часов)
- •Промышленные роботы и роботизированные технологические комплексы (4 часа)
- •Станки для электрофизической и электрохимической обработки (4 часа)
- •Лабораторные занятия
- •Методика изучения основных разделов дисциплины Введение в станковедение
- •Основы кинематики металлорежущих станков
- •Изучение кинематической структуры металлорежущих станков
- •1 Об. Заготовки (в2 ± в4) → z/k∙(1±s/t), об. Фрезы (в1),
- •1 Об. Заготовки → s мм продольного перемещения фрезы.
- •Конснект лекций
- •1.1. Краткий экскурс развития станкостроения
- •1.2. Замечательные изобретения и пионерные научные решения
- •1.2.1 Замечательные изобретения средневековья
- •1.2.2. Пионерные научные решения
- •1.3.Классификация металлорежущих станков
- •1.3.1. По технологическому признаку
- •1.3.2. По степени точности
- •1.3.3. По универсальности
- •1.3.4. Система обозначения станков
- •1.4. Технико-экономические показатели современных станков
- •1.4.1. Эффективность
- •1.4.2. Производительность
- •1.4.3. Надежность
- •1.4.4.Гибкость
- •1.4.5.Точность
- •2. Основы кинематики металлорежущих станков
- •2.1. Формообразование поверхностей
- •2.1.1. Методы воспроизведения производящих линий
- •2.1.2. Образование поверхностей
- •2.1.3. Классификация движений в станках
- •2.2. Понятие о кинематической группе
- •2.3. Кинематическая структура станка
- •2. 4. Теоретические основы настройки станков
- •1 Оборот червячной фрезы → k/z оборота заготовки,
- •Расчетные перемещения внутренних связей
- •1 Оборот распределительного вала (рв) → zi /z оборотов заготовки,
- •Расчетные перемещения для цепей подач
- •1 Двойной ход долбяка → поворота долбяка.
- •2.5. Механические органы кинематической настройки
- •2.5.1. Шестеренчатые коробки скоростей
- •2.5.2. Гитары сменных зубчатых колес
- •2.5.3. Механизмы для бесступенчатого изменения скорости
- •2.5.4.Реверсивные механизмы
- •2.5.5. Суммирующие механизмы
- •2.5.6. Механизмы обгона
- •2.5.7. Механизмы периодического движения
- •2.5.8. Предохранительные устройства
- •3. Изучение кинематической структуры металлорежущих станков
- •3.1. Группа токарных станков
- •3.1.1. Токарно-винторезные станки
- •1 Оборот шпинделя → sпрод перемещения каретки (п2).
- •1 Оборот шпинделя → sпоп перемещения поперечного суппорта (п4).
- •1 Оборот шпинделя (в1) → t перемещения каретки (п2),
- •3.1.2. Токарно-револьверные станки
- •1 Оборот шпинделя → sпрод.. Мм перемещения суппорта (п1).
- •1 Оборот шпинделя → sкр. Мм перемещения револьверной головки (п3).
- •3.1.3. Токарно-карусельные станки
- •1 Оборот планшайбы → sв мм вертикального перемещения
- •1 Оборот планшайбы → sг мм горизонтального перемещения
- •3.2. Станки сверлильно-расточной группы
- •3.2.1. Сверлильные станки
- •3.2.2. Расточные станки
- •1 Оборот шпинделя (в1) → t мм осевого перемещения шпинделя (п8).
- •3.3. Станки фрезерной группы
- •3.4. Шлифовальные и доводочные станки
- •3.4.1. Круглошлифовальные станки
- •3.4.2. Внутришлифовальные станки
- •3.4.3. Плоскошлифовальные станки
- •3.4.4. Бесцентрово-шлифовальные станки
- •3.4.5. Доводочные станки
- •3.5. Станки строгально-протяжной группы
- •3.5.1. Строгальные станки
- •36/48 → М4 → тв X → поперечная каретка стола б (п3).
- •3.5.2. Протяжные станки
- •3.6. Группа станков для обработки зубчатых колес
- •3.6.1. Фасонное зубофрезерование зубчатых колес
- •1/Z об. Шпинделя → n (zф – z) / zф ∙z дополнительного поворота лимба.
- •1 Об. Рукоятки 4 → 1/z поворота шпинделя.
- •3.6.2. Зубофрезерные станки
- •1 Об. Фрезы (в1) → k/z об. Заготовки (в2),
- •1 Об. Заготовки → sв перемещения фрезы (п3),
- •1 Об. Стола → sр перемещения стойки суппорта (п7),
- •1 Об. Заготовки → sо перемещения фрезы (п5),
- •1 Об. Заготовки (в1) → об. Фрезы (в2),
- •1 Об. Заготовки → об. Фрезы (в2).
- •3.6.3. Зубодолбежные станки
- •1 Дв. Ход долбяка → sкр/π m z об. Долбяка.
- •1 Дв. Ход долбяка → sкр мм перемещения по дуге,
- •3.6.4. Станки для зуботочения цилиндрических зубчатых колес
- •3.7. Станки для чистовой обработки зубчатых колес
- •3.7.1. Зубошевинговальные станки
- •1,45 П мм перемещения шток-рейки → sр мм/ход стола (п3).
- •3.7.2. Зубошлифовальные станки
- •1 Об. Заготовки (в4) → πmz мм перемещения каретки (п3),
- •1 Об. Абразивного червяка (в1) → k/z об. Шлифуемого колеса (в2).
- •1 Об. Абразивного червяка (в1) → z/k (1 ± sв/t) об. Шлифуемого колеса (в2±в4),
- •3.8. Станки для обработки конических зубчатых колес
- •1 Об. Люльки (в3) → zп/z об. Заготовки (в2).
- •1 Об. Распределительного вала → (nМ/60) tц об. Электродвигателя.
- •1Об. Распределительного вала → zi/z об. Заготовки.
- •3.9. Станки для обработки резьбы
- •3.9.1. Резьбофрезерные станки
- •1 Об. Шпинделя заготовки (в2) → s мм перемещения суппорта фрезы (п3).
- •57/38 → 29/26 → 15/15 → 30/30 → Кулачок 6 (п4).
- •1 Оборот заготовки → t мм. Перемещения фрезы,
- •1 Об. Заготовки (в3) → t мм перемещения суппорта фрезы (п4).
- •1 Об. Шпинделя 1 заготовки → s мм перемещения суппорта фрезы (п4).
- •3.9.2. Резьбонакатные станки
- •3.9.3. Резьбошлифовальные станки
- •1 Об. Шпинделя заготовки (в2) → t мм премещения суппорта (п3).
- •1 Об. Кулачка врезания 3 → п об. Шпинделя заготовки.
- •3.10.Токарные автоматы и полуавтоматы
- •3.10.1. Классификация станков - автоматов и полуавтоматов
- •3.10.2. Многорезцовые полуавтоматы
- •3.11. Станки с числовым программным управлением
- •3.11.1. Поколения станков с чпу
- •3.11.2. Технологические особенности станков с чпу
- •3.11.3. Конструктивные особенности станков с чпу
- •3.11.4. Станки с чпу первого поколения
- •3.11.5. Многооперационные станки с чпу
- •3.12. Промышленные роботы
- •3.12.1. Поколения промышленных роботов
- •3.12.2. Роботизированные технологические комплексы
- •3. 13. Агрегатные станки
- •3.13.1. Типовые унифицированные компоновки
- •3.13.2. Силовые узлы
- •3.13.3. Гидропанели
- •3.13.4. Шпиндельные узлы
- •3.14. Станки для электрофизической и электрохимической обработки
- •3.14.1. Электроэрозионные станки
- •3.14.2. Комбинированные схемы обработки
- •3.14.3. Лазерное оборудование
- •3.14.4. Раскрой листового материала струей жидкости
- •Вопросы к экзамену
- •Организация рейтингового контроля
- •Словарь специфических терминов
- •Литература Основная
- •Дополнительная
- •Методическая
3.9. Станки для обработки резьбы
Резьбообрабатывающие станки предназначены для формообразования на заготовках винтовых поверхностей, которые широко используют в машиностроении в неподвижных резьбовых соединениях, винтовых и червячных передачах, а также в большинстве режущих инструментов, применяемых при обработке винтовых поверхностей.
Резьбы (винтовые поверхности) характеризуются в продольном направлении винтовой линией и в поперечном сечении, проходящем через ось тела вращения – профилем. Профиль может быть треугольным, прямоугольным, трапецеидальным, полукруглым и т. д.
Для нарезания винтовых поверхностей в большинстве случаев используют режущие и абразивные инструменты, форма режущей кромки или контура которых совпадает с профилем нарезаемой резьбы. Поэтому основным методом образования профиля винтовых поверхностей является метод копирования, и этот метод осуществляется резьбовыми резцами (рис. 3.82, а), метчиками (рис. 3.82, б), плашками (рис. 3.82, в), резьбовыми гребенками (рис. 3.82, г), резьбонарезными головками, дисковыми резьбовыми фрезами (рис. 3.82, д), многониточными гребенчатыми фрезами (рис. 3.82, е), дисковыми (рис. 3.82, ж), и многониточными (рис. 3.82, з) шлифовальными кругами.
Для образования профиля у цилиндрических и глобоидных червяков при нарезании их чашечным обкатным резцом используют метод обката. В продольном направлении форма винтовых поверхностей образуется методом следа или касания в зависимости от применяемого инструмента.
Рис. 3.82. Формообразование винтовых поверхностей на заготовках различными
режущими инструментами: а – резьбовым резцом; б – метчиком; в - плашкой;
г – резьбовой гребенкой; д – дисковой резьбовой фрезой; е – многониточной
гребенчатой фрезой; ж – дисковым шлифовальным кругом; з – многониточным
шлифовальным кругом
В связи с тем, что наиболее распространенным методом образования профиля резьбы является метод копирования, не требующий движения формообразования, кинематическая структура большинства резьбообрабатывающих станков состоит только из кинематических групп, создающих движения для образования винтовой линии. При образовании винтовой линии методом следа (резцом, метчиком, плашкой, резьбовой гребенкой) требуется одно сложное винтовое движение Фv (В1В2), а методом касания (резьбонарезной головкой, фрезой, шлифовальным кругом) – два движения: одно простое ФV (В1) – вращение инструмента, и второе сложное винтовое Фs(В2П3). Таким образом, кинематическая структура резьбообрабатывающих станков в первом случае состоит из одной формообразующей группы, а во втором – из двух формообразующих групп.
В индивидуальном производстве, например, ремонтном или экспериментальном нарезание резьбы осуществляют резьбовыми резцами, метчиками и плашками на универсальных токарно-винторезных станках. При нарезании резцами используется частная винторезная структура этих станков, рассмотренная в разделе 2 на примере понятия о кинематической группе и кинематической структуре станка, а также вданном разделе при анализе станка модели 16К20. При нарезании резьбы метчиками и плашками нет необходимости в использовании винторезной цепи (внутренней связи группы Фs (В1В2)). В этом случае внутренняя связь из-за особой конструкции инструмента осуществляется связью винтовой кинематической пары инструмент – заготовка. Настройка на шаг нарезаемой резьбы здесь отпадает, так как на метчике и плашке режущие кромки расположены по винтовой линии с шагом, равным шагу нарезаемой резьбы. Это обстоятельство обеспечивает также возможность нарезания резьбы при выполнении слесарных работ. В серийном и массовом производстве для нарезания резьбы используют резьбофрезерные и резьбошлифовальные станки, обеспечивающие более высокую производительность, чем токарно-винторезные станки.
Наиболее сложными структурами резьбообрабатывающих станков являются структуры с двумя сложными группами формообразования. Это относится к станкам, нарезающим резьбу червячной резьбовой фрезой с профилем зуба, шагом и длиной, соответствующими профилю, шагу и длине нарезаемой резьбы, а также к станкам, нарезающим многозаходные цилиндрические червяки обкатным резцом. Группа обката (скорости резания) Фv (В1В2) воспроизводит профиль резьбы, а группа подачи Фs (В3П4), образующая винтовое движение, - форму резьбы по длине. Обе группы имеют общий исполнительный орган – шпиндель заготовки, а создаваемые ими сложные движения осуществляются одновременно. Поэтому внутренние связи обеих групп соединены между собой планетарным дифференциалом.
При нарезании конических резьб резьбовым резцом, дисковой фрезой или дисковым шлифовальным кругом траектория винтового движения усложняется, так как вместо цилиндрической винтовой линии необходимо воспроизвести коническую винтовую линию. В соответствии с эти усложняется кинематическая группа, создающая в станке движение с такой траекторией. Такая кинематическая группа Фv (В1П2П3) включает не одну, а две точно настраиваемые внутренние связи.