
- •Геофизика лекции для студентов 2 курса геологического факультета
- •1. Внутреннее строение Земли
- •1.1. Земная кора.
- •1.2. Мантия.
- •1.3. Земное ядро.
- •2. Геофизческие методы
- •2.1. Гравиразведка.
- •2.2. Магниторазведка.
- •Интерпретация данных.
- •2.3. Электроразведка.
- •2.3.1. Электромагнитные поля, используемые в электроразведке
- •2.3.2. Электромагнитные свойства горных пород
- •2.3.3. Электромагнитные зондирования.
- •2.3.4. Электромагнитные профилирования.
- •Аэроэлектроразведка является разновидностью индукционных методов электроразведки. Все варианты аэроэлектроразведки основаны на измерении магнитных компонент поля.
- •2.3.5. Подземно-скважинные методы электроразведки.
- •2.3.6. Интерпретация данных электроразведки
- •Интерпретация данных объемной электроразведки.
- •2.4. Терморазведка.
- •Теория терморазведки построена на основе математического и физического моделирования, натурных наблюдений и установления связей с другими полями Земли.
- •4.1.1. Радиотепловые и инфракрасные съемки
- •2.4.2. Региональные и локальные термические исследования
- •2.4.3. Поисково-разведочные термические исследования.
- •2.5. Ядерная геофизика.
- •2.5.1. Радиометрические методы разведки.
- •2.5.2.Эманационная съемка.
- •2.5.3. Подземные методы изучения естественной радиоактивности.
- •2.5.4. Определение абсолютного возраста пород.
- •2.5.5. Ядерно-геофизические методы.
- •2.6. Геофизические исследования скважин
- •2.6.1. Методы технологического контроля состояния скважин.
- •Кавернометрия.
- •Инклинометрия.
- •Прострелочные работы в скважинах.
- •2.6.2.Электрические методы исследования скважин. Метод естественного поля.
- •Метод кажущихся сопротивлений.
- •Другие методы электрометрии скважин.
- •2.6.3.Ядерные методы исследования скважин.
- •Методы изучения естественной радиоактивности горных пород в скважинах.
- •Методы скважинных исследований с искусственным облучением горных пород.
- •2.6.4. Сейсмоакустические методы исследования скважин.
- •Сейсмические методы.
- •Акустические методы.
- •2.6.5. Термический метод исследований скважин.
- •2.6.6.Магнитный и гравитационный скважинные методы.
- •2.7. Реология.
- •2.8. Экологическая геофизика.
- •2.9. Сейсморазведка.
- •2.9.1. Сейсморазведочная аппаратура.
- •2.9.2. Методика и система наблюдений в полевой сейсморазведке.
- •Виды сейсморазведки.
- •Организация наземных сейсморазведочных работ.
- •2.9.3. Особенности методики морской и других видов сейсморазведки.
- •Сейсморазведка на акваториях.
- •Скважинные и подземные сейсмические исследования.
- •Методика сейсмоэлектрических методов.
- •2.9.4. Обработка и интерпретация материалов сейсморазведки.
- •2.10. Сейсмология.
- •2.10.1. Причины и сила землетрясений.
- •Шкала сейсмической интенсивности msk-64
- •2.10.2. Прогноз и параметры землетрясений.
- •Количественные параметры интенсивности колебаний
- •2.10.3. Методика полевых сейсмологических наблюдений.
- •2.11. Комплексирование геолого-геофизических методов.
2.3. Электроразведка.
Электроразведка объединяет физические методы исследования Земли, поисков и разведки полезных ископаемых, основанные на изучении естественных, либо созданных искусственно электрических и электромагнитных полей. Используемые поля могут быть: установившимися, т.е. существующими свыше секунды и неустановившимися, импульсными с длительностью импульсов от микросекунд до секунд. Если напряженность и структура естественных полей определяется их природой, интенсивностью, а также электромагнитными свойствами горных пород, то для искусственных полей она зависит и от мощности источника, частоты или длительности, а также способов возбуждения поля.
Электроразведка основана на дифференциации горных пород по элетромагнитным свойствам. Характер электромагнитных полей, обусловленных как искусственными, так и естественными источниками, определяется геоэлектрическим строением изучаемого участка.
Основными электромагнитными свойствами горных пород являются удельное электрическое сопротивление (УЭС, или ), электрохимическая активность ( ), поляризуемость ( ), диэлектрическая ( ) и магнитная ( ) проницаемости. Электромагнитные свойства геологических сред, вмещающей среды, пластов, объектов, а также геометрические параметры последних служат основой для построения геоэлектрических разрезов. Геоэлектрический разрез над однородным по тому или иному электромагнитному свойству полупространством принято называть нормальным, а над неоднородным - аномальным. На выделении аномалий и основана электроразведка.
Электроразведка располагает более чем 50 методами. Такое разнообразие методов объясняется тем, что в ней используются естественные поля космической, атмосферной и электрохимической природы; искусственные поля с различными способами их создания и измерения (гальваническим, индуктивным и дистанционными); гармонические поля широкого диапазона частот; импульсные поля разной длительности; регистрируются сигналы разных частотных (от миллигерц до сотен терагерц) и динамических диапазонов. Кроме того электроразведка пользуется новейшими достижениями электротехники и радиоэлектроники. При электроразведке измеряются амплитуды электрических и магнитных составляющих поля, а также их фазы. По геометрии и строению изучаемых геологических разрезов методы электроразведки условно делятся на: 1) зондирования, которые служат для расчленения горизонтально (или полого) слоистых разрезов в вертикальном направлении; 2) профилирования, предназначенные для изучения крутослоистых разрезов или выявления объектов в горизонтальном направлении; 3) подземно-скважинные (объемные), объединяющие методы выявления неоднородностей между скважинами, горными выработками и земной поверхностью.
Изменение
глубинности электроразведки достигается
изменением мощности источников, частоты
и длительности возбуждения, а также
зависит от способов создания поля.
Последние могут быть гальваническими
(ток вводится в Землю с помощью заземлений)
или индукционными (ток пропускается в
незаземленную петлю, рамку). Глубинностью
можно управлять также геометрическим
(дистанционным) и частотным приемами.
Сущность дистанционного (геометрического)
приема сводится к увеличению расстояния
между источником поля и точками, где
оно измеряется, что ведет к росту объема
среды, вовлекаемого в исследование.
Частотный принцип увеличения глубинности
основан на скин-эффекте, т.е. прижимании
поля к поверхности Земли, тем большем,
чем выше частота гармонического поля
(
)
или меньше время (
)
после создания импульсного поля.
(Скин-эффект (поверхностный эффект) —
эффект уменьшения амплитуды электромагнитных
волн по мере их проникновения вглубь
проводящей среды.) Наоборот, чем меньше
частота, больше
(период
колебаний) или
(его называют временем диффузии,
становления поля, или переходного
процесса), тем больше глубинность
разведки. В целом она может меняться от
сотен и десятков километров на постоянном
токе и инфранизких частотах до сантиметров
и миллиметров на частотах свыше гигагерц
(Ггц = 109
Гц).
Электроразведка с той или иной эффективностью применяется для решения практически всех задач, при которых используются геофизические методы. В частности, с помощью естественных переменных полей солнечно-космического происхождения разведываются земные недра на глубинах до 500 км и ведется изучение таких геосфер, как осадочная толща, кристаллические породы, земная кора, верхняя мантия. Электромагнитные зондирования используются при глубинных и структурных исследованиях, поисках нефти и газа. Электромагнитные профилирования применяются при картировочно-поисковых съемках, поисках рудных и нерудных полезных ископаемых. Объемные методы применяются при разведке месторождений. Малоглубинные электромагнитные зондирования и профилирования используются при инженерных и экологических исследованиях.
По технологии и месту проведения работ различают аэрокосмические, полевые (наземные), акваториальные (или аквальные, водные, морские, речные), подземные (шахтно-рудничные) и скважинные (межскважинные) методы электроразведки.
Из-за наличия множества методов электроразведки используются или создаются специально разнообразные комплекты аппаратуры и оборудования. Создаваемые и выпускаемые малосерийные приборы быстро устаревают и непрерывно совершенствуются в направлении увеличения числа одновременно регистрирующих каналов, компьютеризации измерений и обработки информации. Поэтому остановимся лишь на принципах устройства и назначения основных групп приборов.
В комплект аппаратуры и оборудования обычно входят следующие блоки.
Машинные генераторы, батареи, аккумуляторы постоянного тока, которые предназначены либо для непосредственного питания заземлений, либо являются источником энергии для получения напряжений разной частоты и формы, питающие заземления или незаземленные контуры.
Измерители или регистраторы разностей потенциалов (
), предназначенные для определения амплитуд, а на переменном токе и фаз сигналов в приемных линиях.
Электроды-заземлители для гальванического создания поля в Земле и измерения разностей потенциалов.
Незаземленные контуры: петли диаметром до 4 км и рамки диаметром до 1 м, предназначенные для индуктивного возбуждения поля или измерения напряженности магнитного поля.
Вспомогательное оборудование.
Для электроразведки небольших глубин (до 500 м) с поверхности Земли и в горных выработках используются различного рода переносная аппаратура и оборудование, состоящие из ряда блоков, общей массой 20 - 100 кг.
Переносная генераторно-измерительная аппаратура обычно приспособлена для работ одним-двумя методами.
При электромагнитных зондированиях больших глубин (до 10 км), когда необходимы мощные источники тока, а также при магнитотеллурических исследованиях применяются различные электроразведочные станции (ЭРС). Они смонтированы на одной или двух грузовых или легковых автомашинах. На одной автомашине, называемой генераторной группой, расположены один или два генератора постоянного тока напряжением до 10 кВ при токе до 100 А, работающие от двигателя автомобиля. На отдельной автомашине расположена аппаратура, предназначенная для автоматической регистрации получаемой информации.
Аналогичным образом устроена электроразведочная станция для морских электромагнитных зондирований.