
- •Геофизика лекции для студентов 2 курса геологического факультета
- •1. Внутреннее строение Земли
- •1.1. Земная кора.
- •1.2. Мантия.
- •1.3. Земное ядро.
- •2. Геофизческие методы
- •2.1. Гравиразведка.
- •2.2. Магниторазведка.
- •Интерпретация данных.
- •2.3. Электроразведка.
- •2.3.1. Электромагнитные поля, используемые в электроразведке
- •2.3.2. Электромагнитные свойства горных пород
- •2.3.3. Электромагнитные зондирования.
- •2.3.4. Электромагнитные профилирования.
- •Аэроэлектроразведка является разновидностью индукционных методов электроразведки. Все варианты аэроэлектроразведки основаны на измерении магнитных компонент поля.
- •2.3.5. Подземно-скважинные методы электроразведки.
- •2.3.6. Интерпретация данных электроразведки
- •Интерпретация данных объемной электроразведки.
- •2.4. Терморазведка.
- •Теория терморазведки построена на основе математического и физического моделирования, натурных наблюдений и установления связей с другими полями Земли.
- •4.1.1. Радиотепловые и инфракрасные съемки
- •2.4.2. Региональные и локальные термические исследования
- •2.4.3. Поисково-разведочные термические исследования.
- •2.5. Ядерная геофизика.
- •2.5.1. Радиометрические методы разведки.
- •2.5.2.Эманационная съемка.
- •2.5.3. Подземные методы изучения естественной радиоактивности.
- •2.5.4. Определение абсолютного возраста пород.
- •2.5.5. Ядерно-геофизические методы.
- •2.6. Геофизические исследования скважин
- •2.6.1. Методы технологического контроля состояния скважин.
- •Кавернометрия.
- •Инклинометрия.
- •Прострелочные работы в скважинах.
- •2.6.2.Электрические методы исследования скважин. Метод естественного поля.
- •Метод кажущихся сопротивлений.
- •Другие методы электрометрии скважин.
- •2.6.3.Ядерные методы исследования скважин.
- •Методы изучения естественной радиоактивности горных пород в скважинах.
- •Методы скважинных исследований с искусственным облучением горных пород.
- •2.6.4. Сейсмоакустические методы исследования скважин.
- •Сейсмические методы.
- •Акустические методы.
- •2.6.5. Термический метод исследований скважин.
- •2.6.6.Магнитный и гравитационный скважинные методы.
- •2.7. Реология.
- •2.8. Экологическая геофизика.
- •2.9. Сейсморазведка.
- •2.9.1. Сейсморазведочная аппаратура.
- •2.9.2. Методика и система наблюдений в полевой сейсморазведке.
- •Виды сейсморазведки.
- •Организация наземных сейсморазведочных работ.
- •2.9.3. Особенности методики морской и других видов сейсморазведки.
- •Сейсморазведка на акваториях.
- •Скважинные и подземные сейсмические исследования.
- •Методика сейсмоэлектрических методов.
- •2.9.4. Обработка и интерпретация материалов сейсморазведки.
- •2.10. Сейсмология.
- •2.10.1. Причины и сила землетрясений.
- •Шкала сейсмической интенсивности msk-64
- •2.10.2. Прогноз и параметры землетрясений.
- •Количественные параметры интенсивности колебаний
- •2.10.3. Методика полевых сейсмологических наблюдений.
- •2.11. Комплексирование геолого-геофизических методов.
Методика сейсмоэлектрических методов.
Существует два основных варианта сейсмоэлектрического метода (СЭМ): пьезоэлектрический метод (ПЭМ) и метод сейсмоэлектрических потенциалов (МСЭП).
Методика и техника наземных работ в пьезоэлектрическом методе сходны с таковыми наземной сейсморазведки. Возбуждение упругих волн осуществляется с помощью небольших взрывов (подрыв электроденаторов, детонирующего шнура и т.п.) или ударов. При прохождении упругих волн в породах с повышенным пьезоэлектрическим эффектом генерируются электромагнитные колебания. Наряду с упругими колебаниями, улавливаемыми сейсмоприемниками, в методе ПЭМ изучаются электрические составляющие поля с помощью заземленных линий, реже магнитные - посредством рамочных антенн. Сейсмоприемники и датчики располагаются рядом.
Наземный вариант пьезоэлектрического метода применяется для выявления и оконтуривания пьезоэлектрически активных геологических объектов (хрусталеносных, кварцевых, пегматитовых жил, нефелиносодержащих пород), к которым могут быть приурочены месторождения золота, горного хрусталя и оптического кварца, слюды, нефелина. Глубинность разведки 10 - 30 м.
Метод сейсмоэлектрических потенциалов. Методика и техника работ при изучении сейсмоэлектрических потенциалов такая же, как и в пьезоэлектрическом методе. Отличие лишь в природе возбуждаемых электромагнитных полей. Метод сейсмоэлектрических потенциалов находит применение в комплексе инженерно-гидрогеологических и сейсмологических исследований. В частности, с помощью этого метода можно получить информацию о влажности, пористости, мерзлотных свойствах пород. Он может использоваться при сейсмологическом картировании для оценки сейсмической опасности.
2.9.4. Обработка и интерпретация материалов сейсморазведки.
В отличие от других методов геофизики, интерпретации данных сейсморазведки предшествует очень трудоемкий этап обработки сейсмограмм, направленный на выделение из сотен зарегистрированных волн нескольких полезных. С помощью как рациональной системы наблюдений, так и сложной цифровой обработки материалов надо подавить множество регулярных и нерегулярных волн-помех и выявить кинематические (время прихода) и динамические (амплитуда сигналов) характеристики волн. Далее их надо идентифицировать однократными отраженными или преломленными (рефрагированными) волнами.
Таким образом, в результате обработки сейсмических данных получаются времена прихода тех или иных волн на разных расстояниях от ПВ. По ним строятся годографы волн и временные разрезы (обычно в МОВ и МОГТ).
Обработка заканчивается качественной интерпретацией выявленных однократных волн, т.е. дается характеристика изменения сейсмического разреза по горизонтали и вертикали. Особенно наглядны временные разрезы, на которых видны все структурные (геометрические) особенности разреза.
Обработка сейсмограмм.
1. Ручная обработка сейсмограмм. Для ручной обработки данных сейсморазведки используются сейсмограммы, на которых непрерывная аналоговая запись представлена в видимой форме.
На первом этапе обработки сейсмограмм ставят марки времени от момента взрыва. Далее ведут корреляцию, или выделение вступлений или фаз одной и той же волны по разным каналам сейсмограммы. Вступления волны (первое резкое отклонение записи сигнала от положения равновесия) легко определить для волн, пришедших первыми (первые вступления). Как правило, это прямые или преломленные волны. Определить вступление других полезных волн, особенно пришедших от глубинных границ и в условиях интерференции волн, трудно, поэтому ведется фазовая корреляция. Для этого на сейсмограммах прослеживаются оси синфазности, или фазы колебаний, т.е. максимумы и минимумы на записи, наблюдаемые вслед за вступлением волны и характеризующиеся одинаковой устойчивой формой и амплитудой на соседних трассах.
Для улучшения записи и облегчения выделения тех или иных полезных волн в процессе перезаписи полевых материалов меняют фильтрацию, усиление, производят суммирование сигналов с тем, чтобы сделать запись визуально более четкой и лучшей для ручной обработки. Выделив оси синфазности, по маркам времени легко найти время прихода фазы той или иной волны к каждому сейсмоприемнику. В полученное время прихода волн вводятся так называемые статические поправки: за зону малых скоростей мощностью в несколько первых десятков метров, где скорости всегда ниже, чем в коренных породах, за рельеф, за глубину взрыва и другие, а также поправка за фазу, благодаря которой определяется точное время вступления волны.
2. Цифровая обработка сейсмических данных. Решение сложнейших проблем сейсморазведки - выделение полезных однократных отраженных и преломленных (рефрагированных) волн от ряда границ раздела на фоне сотен волн-помех было бы невозможным без цифровой обработки сейсмических данных на ЭВМ. "Цифровая революция" в геофизике прошла в 60 - 70-е годы, а уровень компьютеризации в сейсморазведке - один из самых высоких среди всех научно-прикладных дисциплин.
Основу цифровой обработки сейсмических данных составляют три вида математических операций: преобразования Фурье, свертка (конволюция) сигналов и корреляция.
Преобразования Фурье преобразуют функции во временной области (например, короткий импульс при возбуждении упругой волны) в функции в частотной области (например, длительная гармоническая запись сигнала, снимаемого с сейсмоприемника) и обратно. Важно, что информация в ходе таких преобразований принципиально не теряется, но ее обработка более удобна и наглядна иногда в частотной, иногда во временной областях.
Свертка сигналов - это математическое решение задачи фильтрации, т.е. операция замещения каждого элемента входного сигнала некоторым выходным с определенной весовой функцией. Один из этих сигналов берется перевернутым, т.е. в противофазе.
Корреляция выявляет меру сходства двух последовательностей (выборок каких-то данных). Она аналогична свертке, только без переворота одной из функций. Например, с помощью метода взаимной корреляции определяется сходство сигналов двух трасс записей сейсмоприемников. Для улучшения сходства в один из каналов можно ввести временной сдвиг.
Целью разных методов цифровой обработки является увеличение отношения сигнал/помеха, чтобы надежно отфильтровать кратные и другие волны-помехи, прокоррелировать оси синфазности полезных однократно отраженных или преломленных волн, определить время их прихода по всем трассам и изменение амплитуд сигналов по ним.
3. Построение временных разрезов. При обработке данных МОВ строятся временные разрезы. Временной разрез представляет собой определенным образом подобранные и преобразованные сейсмограммы, на которых записи отнесены к нулевому времени (t0), т.е. времени пробега волны при нулевом удалении от приемника до источника. Для этого в наблюденные сейсмограммы вводятся так называемые кинематические поправки.
Такие разрезы автоматически получаются при работах методом t0, или центрового луча, когда сейсмоприемник располагается вблизи пункта возбуждения, а запись производится одним сейсморегистрирующим каналом, например, в методе непрерывного сейсмического профилирования на акваториях. Если сделать монтаж из трасс таких записей (для чего направить ось времен каждой трассы вниз, а рядом на определенных расстояниях, соответствующих положению пунктов возбуждения, расположить все соседние трассы), то это и будет временной разрез.
При многоканальной автоматической записи строятся временные разрезы с помощью ЭВМ. Выделяя на временных разрезах оси синфазности, соответствующие временам прихода однократных отраженных волн, получаем линии t0, каждая из которых отвечает одной из отражающих границ геологического разреза.
Временные разрезы хотя и не несут информации о глубинах залегания отражающих границ, но дают представление об основных чертах геологического строения и являются важным результатом качественной интерпретации данных МОВ. Если средняя скорость не меняется вдоль профиля, то линия может быть непосредственно сопоставлена с отражающей границей. Зная среднюю скорость в толще над отражающей границей и закон ее изменения со временем, например, по имеющемуся для данного района графику Vср(t0), легко перестроить временной разрез в глубинный. В случае, когда Vср(t0) остается постоянной вдоль профиля, такое преобразование сводится к замене шкалы времени на шкалу глубин H = Vср(t0) * t0/2. В случае непостоянства трансформация временных разрезов в глубинные затруднена и осуществляется с помощью ЭВМ.
4. Обработка данных МОГТ. Как отмечалось, в методе общей глубинной точки (МОГТ) для каждой точки профиля получается несколько сейсмотрасс, т.е. запись с разных пунктов возбуждения (ПВ) и сейсмоприемников (СП), расположенных симметрично от (точки записи). При такой системе наблюдений во всех точках профиля последовательно могут располагаться ПВ и СП, а число таких перестановок равно кратности перекрытий.
Поскольку, кроме однократных волн, на сейсмограммах регистрируется множество многократно отраженных волн от всех границ раздела, то они маскируют полезные однократные волны. Целью обработки данных МОГТ и является хотя бы частичное подавление многократно отраженных волн. Для этого используются сложные многоступенчатые приемы суммирования всех сейсмотрасс с введением в них кинематических поправок и получением так называемых суммотрасс. Обработка требует больших расчетов и выполняется в автоматическом режиме на ЭВМ.
Количественная интерпретация данных сейсморазведки
Количественная интерпретация годографов и временных разрезов начинается с изучения скоростного разреза и определения средних скоростей толщ пород над каждой из выявленных отражающих и преломляющих границ. Далее временные разрезы преобразуются в глубинные, т.е. определяется геометрия разреза (глубины залегания, углы наклона ()) и распределение пластовых, средних, граничных скоростей по профилю и глубине. Заключительным этапом является геологическое истолкование результатов, для чего используется вся геологическая информация, данные бурения и геофизических исследований в скважинах (ГИС). Оно заканчивается построением сейсмогеологических разрезов, называемых так потому, что это фактически структурно-геологические разрезы, но построенные по данным сейсморазведки и ГИС. Кроме того, строятся структурные карты.