
- •Коллоквиум по линейной алгебре
- •2. Скалярное произведение
- •Выражение скалярного произведения векторов,заданных координатами
- •Свойства векторного произведения.
- •7. Геометр. Смысл смешанного произведения
- •8. Вычисление смешанного произведения векторов,заданных своими координатами
- •9. Уравнение прямой,проходящей через две точки: а)на плоскости б)в пространстве
- •10. Общее уравнение прямой на плоскости, его частные случаи
- •11. Угол между двумя прямыми на плоскости: условия параллельности и перпендикулярности двух прямых
- •12. Общее уравнение плоскости, его частные случаи
- •13. Уравнение плоскости,проходящее через 3 заданные точки
- •14.Угол между двумя плоскостями:условия параллельности и перпендикулярности двух плоскостей
- •15. Окружность, ее свойства,каноническое уравнение
- •16. Эллипс, ее свойства,каноническое уравнение
- •17. Парабола, ее свойства,каноническое уравнение
- •Свойства:
- •18. Гипербола, ее свойства,каноническое уравнение
- •19. Операции над комплексными числами.Заданными в алгебр. Форме
- •20. Операции над комплексными числами.Заданными в тригонометр. Форме Тригонометрическая и показательная формы
- •21. Извлечение корня из комплексного числа
- •22. Разложения многочлена на множители, основная теорема алгебры
- •23. Разложение рациональной дроби на сумму простейших дробей
- •24. Виды матриц
- •25. Операции над матрицами
- •Умножение вектора на матрицу
- •26. Элементарные преобразования матрицы
- •27. Ступенчатый вид матрицы,вид Гаусса
- •28. Ранг матрицы,его свойства
- •29. Определитель матрицы,его свойства
25. Операции над матрицами
Умножение
матрицы
на
число
(обозначение:
)
заключается в построении матрицы
,
элементы которой получены путём умножения
каждого элемента матрицы
на
это число, то есть каждый элемент
матрицы
равен
Свойства умножения матриц на число:
1. 1A = A;
2. (λβ)A = λ(βA)
3. (λ+β)A = λA + βA
4. λ(A+B) = λA + λB
Сложение
матриц
есть
операция нахождения матрицы
,
все элементы которой равны попарной
сумме всех соответствующих элементов
матриц
и
,
то есть каждый элемент матрицы
равен
Свойства сложения матриц:
1.коммутативность: A+B = B+A;
2.ассоциативность: (A+B)+C =A+(B+C);
3.сложение с нулевой матрицей: A + Θ = A;
4.существование противоположной матрицы: A + (-A) = Θ;
Умножение
матриц (обозначение:
,
реже со знаком умножения
) —
есть операция вычисления матрицы
,
элементы которой равны сумме произведений
элементов в соответствующей строке
первого множителя и столбце второго.
Количество
столбцов в матрице
должно
совпадать с количеством строк в матрице
,
иными словами, матрица
обязана
бытьсогласованной с
матрицей
.
Если матрица
имеет
размерность
,
—
,
то размерность их произведения
есть
.
Свойства умножения матриц:
1.ассоциативность (AB)C = A(BC);
2.некоммутативность (в общем случае): AB
BA;
3.произведение коммутативно в случае умножения с единичной матрицей: AI = IA;
4.дистрибутивность: (A+B)C = AC + BC, A(B+C) = AB + AC;
5.ассоциативность и коммутативность относительно умножения на число: (λA)B = λ(AB) = A(λB)
Умножение вектора на матрицу
По обычным правилам матричного умножения осуществляется умножение на матрицу слева вектора-столбца, а также умножение вектора-строки на матрицу справа. Поскольку элементы вектора-столбца или вектора-строки можно записать (что обычно и делается), используя один, а не два индекса, это умножение можно записать так:
для вектора-столбца v (получая новый вектор-столбец Av):
для вектора-строки s (получая новый вектор-строку sA):
Вектор-строка, матрица и вектор столбец могут быть умножены друг на друга, давая число (скаляр):
(Порядок важен: вектор-строка слева, вектор-столбец справа от матрицы).
26. Элементарные преобразования матрицы
Элементарные преобразования матрицы — это такие преобразования матрицы, в результате которых сохраняется эквивалентность матриц. Таким образом, элементарные преобразования не изменяют множество решений системы линейных алгебраических уравнений, которую представляет эта матрица.
Элементарными преобразованиями строк называют:
перестановка местами любых двух строк матрицы;
умножение любой строки матрицы на константу ,
;
прибавление к любой строке матрицы другой строки.
В некоторых курсах линейной алгебры перестановка строк матрицы не выделяется в отдельное элементарное преобразование в силу того, что перестановку местами любых двух строк матрицы можно получить, используя умножение любой строки матрицы на константу , и прибавление к любой строке матрицы другой строки, умноженной на константу , .
Аналогично определяются элементарные преобразования столбцов.
Элементарные
преобразования обратимы.
Обозначение
указывает
на то, что матрица
может
быть получена из
путём
элементарных преобразований (или
наоборот)