
- •1. Користуючись системою електромеханічних аналогій, запропонуйте механічні аналоги нелінійного опору та нелінійної провідності.
- •2. Чим, на Вашу думку, відрізняються активні лінії на базі активних провідностей та активних опорів?
- •3. Поясніть якісно, чому на високих частотах нелінійність активних ліній можна вважати слабкою.
- •4. Намалюйте миттєвий розподіл напруги вздовж активної лінії, в якій збуджені дві зустрічні хвилі, для різних початкових співвідношень між їхніми інтенсивностями. Як вони змінюватимуться з часом?
- •1. Коли синхронні коливання у середовищах, описуваних - моделлю, є стійкими щодо збурень?
- •2. Який фізичний зміст функцій () та () в рівнянні для - моделі?
- •3. Які припущення використовуються при виведенні рівняння для фазових хвиль?
- •4. Чи можна описувати короткі хвилі в автоколивному середовищі за допомогою рівняння для фазових хвиль?
- •5. Дайте фізичну інтерпретацію фазовим хвилям.
- •7. Проаналізуйте застосовність понять фазової та групової швидкості до фазових хвиль.
- •1. Чи можна впливати на кінетику відкритих (нерівноважних) систем шляхом зміни зовнішніх параметрів? Відповідь дати на прикладі горіння в комірці та моделі Шльогля.
- •2. Чому з трьох стаціонарних станів бістабільного середовища один виявляється нестійким?
- •3. Якими процесами визначається швидкість і напрямок руху біжучого фронту в середовищі, де протікає хімічна реакція, описувана моделлю Шльогля.
- •5. Якісно намалюйте фазовий потрет для хвилі гасіння
- •6. Проаналізуйте застосовність понять фазової та групової швидкості до біжучих фронтів.
- •7. Від чого залежить ширина фронту хвилі запалювання?
- •8. Якісно охарактеризуйте еволюцію довільного початкового збурення в бістабільному середовищі.
- •9. Чи залежать біжучі фронти від початкових і граничних умов? Як саме?
- •10. Чому фронт лісової пожежі звичайно буває плоским?
- •11. Намалюйте кінетичну функцію для середовища, в якому можливі хвилі заселення.
- •12. У чому відмінність між хвилею заселення та хвилею запалювання в бістабільному середовищі?
- •13. Знак швидкості біжучого фронту може змінюватись в залежності від параметрів моделі. Чи можливо таке для хвилі заселення.
- •14. Як швидкість хвилі заселення залежить від кривини фронту
- •5. Як зміниться профіль біжучого імпульсу при врахуванні дифузії інгібітору?
- •8. Порівняйте між собою залежності швидкості біжучого фронту в бістабільному середовищі та швидкості біжучого імпульсу в середовищі з відновленням від температури.
- •9. Проаналізуйте застосовність понять фазової та групової швидкості до біжучих імпульсів.
- •10. Опишіть еволюцію в часі середовища з відновленням, яке в початковий момент часу характеризується довільними розподілами концентрацій інгібітору та температури.
- •1. Як можна збудити періодичну хвилю в середовищі з відновленням?
- •2. Чому періодичні хвилі в середовищах із відновленням мають обмеження зверху на величину хвильового числа?
- •3. Чому зі зростанням хвильового числа швидкість періодичної хвилі в середовищі з відновленням зменшується?
- •Контрольні питання до розділу 2.1
- •1. Назвіть особливості автохвильових процесів порівняно з іншими відомими Вам типами хвиль.
- •2. Назвіть загальні властивості середовищ, у яких можуть мати місце автохвильові процеси.
- •3. Які автохвильові процеси можливі, на Вашу думку, в активному середовищі, що має три стійкі стани рівноваги?
- •4. Чи буде стійким плоский фронт біжучого імпульсу в двовимірній моделі?
- •Контрольні питання до розділу 2.2
- •1. Як пов’язані властивості середовищ із типами автохвильових процесів, що можливі в цих середовищах?
- •2. До якого типу активних середовищ належить, на Вашу думку, необмежений брюсселятор?
- •3. Порівняйте між собою періодичні автохвилі в активній лінії та в автоколивному активному середовищі.
- •1. Як, на Вашу думку, вплине врахування активних опорів на розраховану частоту генерації автогенератора на активній лінії?
- •1. Як співвідносяться максимальні частоти хвиль у вигляді одиночної та потрійної спіралі в середовищах із відновленням?
- •3. За яких початкових умов у середовищі з відновленням збуджуватиметься спіральна хвиля?
- •4. В однорідному середовищі, де можливе горіння з виділенням інгібітору, збуджена спіральна хвиля. Як залежать розміри її ядра від температури навколишнього середовища? Дайте якісне пояснення.
- •5. Як, на вашу думку, вплине врахування дифузії інгібітору на оцінку розміру ядра спіральної хвилі в порівнянні з моделлю, де така дифузія відсутня?
- •2. Опишіть часову еволюцію фазових хвиль в автоколивному середовищі, яке має два локальні максимуми для частоти локальних автоколивань.
- •3. Як, на Вашу думку, зміняться властивості пейсмекера, якщо збурення в середовищі, яке його породило, не буде аксіально-симетричним?
- •4. Як властивості локального збурення впливають на характеристики відповідного пейсмекера?
- •1. Порівняйте між собою джерела автохвиль типу поділу фронту та типу “луна”
- •Верхній графік це епюра зміни концентрації з часом, а нижній з координатою.
- •7. Намалюйте епюри зміни температури та концентрації інгібітору по обидва боки від джерела типу «луна» з урахуванням взаємної залежності температури стаціонарного стану та концентрації інгібітору.
- •Контрольні питання до розділу 2.3
- •1. Чи існує зв’язок між типами активних середовищ та типами джерел, що існують у цих середовищах?
- •2. Порівняйте між собою ревербератори в середовищах із відновленням та в середовищах автохвильового типу.
- •3. Порівняйте між собою пейсмекери та автопейсмекери.
- •4. Чи можливі, на Вашу думку, автономні джерела періодичних автохвиль у бістабільних середовищах?
- •1. Запропонуйте кілька прикладів систем, у яких можлива дифузійна нестійкість.
- •2. Чи будуть властивості структур, що виникають у двовимірній області внаслідок розвитку дифузійної нестійкості, залежати від форми цієї області?
- •1. Які рівняння використовують для аналізу конвекції Релея – Бенара?
- •2. Як залежить критичне значення різниці температур, при якому виникає конвекція, від товщини шару рідини? Запропонуйте якісне пояснення цієї залежності.
- •3. Який із стаціонарних розв’язків системи Лоренца відповідає термодинамічній гілці?
- •4. Які властивості конвекції Релея – Бенара дозволяє передбачити лінійна теорія?
- •5. Чому без урахування залежності параметрів рідини від температури теорія передбачає стійкість лише для конвективних валів?
- •6. В якому наближенні вдається аналітично проаналізувати формування шестикутних комірок Бенара?
- •7. Який із стаціонарних розв’язків системи рівнянь, що описує формування шестикутних конвективних комірок, відповідає термодинамічній гілці?
- •8. За яких умов можливе формування шестикутних комірок Бенара?
- •9. Який механізм формування шестикутних комірок Бенара?
- •10. Як можна розрахувати розмір комірок Бенара?
- •11. Чи пов’язані між собою розміри конвективних валів і шестикутних комірок для тієї самої системи?
- •12. Які властивості структур при конвекції Релея – Бенара залежать від початкових умов, а які – ні?
- •15. Глибина шару рідини, в якому відбувається конвекція Релея – Бенара, монотонно змінюється в одному напрямку. Вважаючи зміну плавною, опишіть картину утворених структур.
- •1. Опишіть якісно механізм стабілізації струму в баретері.
- •2. З яких міркувань можна визначити величину стуму, що підтримується в баретері при обмеженій зміні прикладеної напруги?
- •3. Як можна збільшити діапазон прикладених напруг, у якому баретер стабілізує струм?
- •4. Чи можливі, на Вашу думку, осциляції струму в баретері навколо критичного значення?
- •5. Чи можливий, на Вашу думку, ефект баретування, якщо високотемпературний та низькотемпературний питомі опори змінюються вздовж дротини? Відповідь обґрунтуйте.
- •6. Користуючись ступінчастою апроксимацією залежності питомого опору нитки баретера від температури, якісно зобразіть вольт-амперну характеристику баретера.
- •Контрольні питання до розділу 2.4
- •2. У чому полягає якісна відмінність між формуванням дисипативних структур у випадках баретування та конвекції Релея – Бенара?
- •3. Порівняйте між собою дисипативні структури в баретері та шарі рідини, який підігрівається знизу, з точки зору впливу початкових та граничних умов.
- •4. Порівняйте між собою автохвилі та дисипативні структури. Що в них спільного і що відмінного?
- •5. Чи можуть в одному й тому ж самому середовищі виникати автохвилі й дисипативні структури? Відповідь обґрунтувати.
Верхній графік це епюра зміни концентрації з часом, а нижній з координатою.
7. Намалюйте епюри зміни температури та концентрації інгібітору по обидва боки від джерела типу «луна» з урахуванням взаємної залежності температури стаціонарного стану та концентрації інгібітору.
В
ерхній
графік це епюра зміни концентрації з
часом, а нижній з координатою.
Нехай критичне значення концентрації інгібітору в цих областях, як і раніше, досягається одночасно. Вважатимемо, однак, що тепер швидкості накопичення та розпаду інгібітору по різні боки нерухомого фронту відрізняються. Приймемо для визначеності, що більшою швидкістю характеризується накопичення інгібітору.
Нехай у початковий момент часу всюди n=ncr, в області х>0 відбувається горіння, в області х<0 горіння відсутнє. Через деякий час в області х>0 концентрація інгібітору зросте, в області х<0 зменшиться, так що буде виконано умову n2>ncr>n1 (рис. 2.3.16 б). Тоді виникають умови для розвитку нестійкості типу зсуву. В результаті розвитку цієї нестійкості формується хвиля гасіння, що побіжить в область х>0 (рис. 2.3.16 а). З часом подальше зменшення концентрації інгібітору в області х<0 (рис. 2.3.16 б) приведе до того, що горіння стане “енергетично невигідним”, і в область х<0 побіжить хвиля запалювання (рис. 2.3.16 а). Таким чином, у точці х=0 знову сформується стрибок температури, але його знак буде протилежним до початкового.
Внаслідок сформованого таким чином розподілу температури в області х>0 концентрація інгібітору спадатиме, в області х<0 – зростатиме. В деякий момент часу концентрація інгібітору в усій області досягне критичного значення, і в системі відтворяться початкові умови з тією тільки відмінністю, що області х>0 та х<0 поміняються місцями (рис. 2.3.16 б).
В результаті в обидва боки від нерухомого фронту збудження, як і в попередньому випадку, поширюватимуться імпульси горіння. Відмінність полягатиме в тому, що, по-перше, тривалість імпульсів тепер буде меншою, ніж проміжок між сусідніми імпульсами (рис. 2.3.16), і, по-друге, хвилі перекидання в різні боки від нерухомого фронту будуть тепер відбігати неодночасно.
Контрольні питання до розділу 2.3
1. Чи існує зв’язок між типами активних середовищ та типами джерел, що існують у цих середовищах?
Так, оскільки джерела, що викають в таких середовищах є джерелами автохвиль. А автохвилі за визначення це хвилі параметри яких не залежать (або слабко залежать) від граничних , або початкових умов і визначаються властивостями самого середовища. Отже типи джерел автохвиль залежать від типів активних середовищ (наприклад джерела концентричних і спіральних хвиль відрізняються в середовищах з відновленням і в автоколивних середовищах!).
2. Порівняйте між собою ревербератори в середовищах із відновленням та в середовищах автохвильового типу.
Зовні
спіральні хвилі в автоколивних середовищах
нагадують спіральні хвилі в середовищах
із відновленням: у них також можна
виділити ядро, а на великих віддалях
від нього фронт хвилі має форму архімедової
спіралі (зі сталим кроком). Амплітуда
збурення при поширенні такої хвилі
дорівнює нулеві в центрі і прямує до
сталої величини при віддаленні від
нього. Але розміри ядра (тобто області,
де амплітуда ще не досягла граничної
величини) тепер будуть малими – порядку
дифузійної довжини (b)1/2,
де коефіцієнт b визначається формулою
(2.2.44), а час релаксації амплітуди
– формулою (2.2.38). Відзначимо, що в
автоколивних середовищах, на відміну
від середовищ із відновленням,
багаторукавні спіральні хвилі виявляються
нестійкими. Також, у середовищі з
відновленням неможливий розв’язок у
вигляді променю, що обертається навколо
ядра, оскільки в такому середовищі
максимальна швидкість руху фронту
обмежена й при віддалені від ядра
виходить на деяке стале значення
(див. пит. 3 до розділу 2.3.2).