
- •Введение
- •1.Вязкость жидкостей и газов
- •2. Измерение коэффициента вязкости жидкости по методу стокса
- •3. Описание установки
- •4.Порядок выполнения работы
- •Контрольные вопросы
- •Определение отношения теплоемкости газа при постоянном давлении к теплоемкости при постоянном объеме
- •Теплоемкость идеального газа
- •Метод клемана - дезорма
- •3. Работа при адиабатическом процессе
- •4. Описание установки. Порядок выполнения работы
- •Порядок выполнения работы
- •5. Вычисление работы адиабатического расширения воздуха
- •6. Контрольные вопросы
- •Опытная проверка распределения максвелла
- •Введение. Понятие о статистическом распределении
- •2. Распределение максвелла
- •Величина (5)
- •3. Экспериментальное изучение распределения электронов по модулям скоростей
- •4. Описание лабораторной установки
- •5. Порядок проведения измерений
- •Форма отчета
- •Кафедра физики
- •Изучение распределения Максвелла
- •1. Электрический ток в металлах
- •2. Расчет моста уитстона на основе правил кирхгофа
- •3. Применение реохорда в схеме моста уитстона
- •4. Контрольные вопросы
- •5. Описание рабочей схемы
- •6. Порядок выполнения работы
- •Движение электронов в магнетронЕе
- •2. Вывод расчетной формулы
- •3. Контрольные вопросы
- •5. Порядок выполнения работы
- •Форма отчета
- •Кафедра физики
- •По лабораторной работе № 28
- •Определение длины волны света при помощи колец Ньютона
- •1. Интерференция света
- •2. Интерференция при отражении света
- •3. Определение длины волны света при помощи колец Ньютона
- •4. Bывод расчетной формулы
- •5. Установка для наблюдения колец ньютона
- •6. Порядок выполнения работы
- •Расчет значений а
- •2. Графический метод определения длины волны
- •График строится на миллиметровой бумаге и по нему определяется
- •1. Дифракция света
- •Дифракционная решетка
- •3. Описание установки
- •4. Порядок выполнения работы
- •4.1. Определение длины волны спектральных
- •4.2. Расчет характеристик дифракционной решетки
- •5. Kонтрольные вопросы
- •Приложение форма отчета
- •Кафедра физики
- •По лабораторной работе 29 Изучение дифракционных решеток. Определение длины световой волны с помощью дифракционной решетки
- •Характеристики дифракционной решетки
- •Исследование полупроводникового резистора
- •1. Зонная модель собственных полупроводников
- •2. Исследование температурной зависимости сопротивления терморезистора и определение ширины запрещенной зоны в собственном полупроводнике
- •3. Порядок выполнения работы
- •Форма отчета
- •Кафедра физики
- •1. Оптические спектры
- •2. Энергетические уровни атома натрия
- •3. Определение постоянной планка спектроскопическим методом
- •4. Описание установки
- •5. Порядок выполнения работы
- •6. Контрольные вопросы
- •Приложение форма отчета
- •Кафедра физики
- •По лабораторной работе № 24 Определение постоянной Планка спектроскопическим методом
- •Измерение спектральных линий натрия
- •Исследование - распада радиоактивного изотопа плутония
- •1. Радиоактивный -распад ядер
- •2. Взаимодействие движущихся -частиц с веществом
- •2.1. Ионнизационные потери
- •2.2. Потери энергии на образование ядер отдачи
- •2.3. Радиационные потери
- •3. Кривая поглощения -частицы в веществе
- •4. Экспериментальная часть
- •4.1. Описание установки
- •4.2. Принцип действия сцинтилляционного счетчика
- •4.2. Порядок выполнения работы
- •5. Контрольные вопросы
3. Контрольные вопросы
1. В каком случае траектория электрона, движущегося в однородном магнитном поле, представляет собой окружность?
2. При каких условиях траектория электрона, движущегося в скрещенных электрическом и магнитном полях, будет прямолинейной?
3. Заряженная частица прошла ускоряющую разность потенциалов U=104 В и влетела в скрещенные под прямым углом электрическое (E=10кВ/м) и магнитное (B = 0,10 Тл) поля. Найти удельный заряд частицы, если, двигаясь перпендикулярно к обоим полям, частица не испытывает отклонения от прямолинейной траектории.
Рис.
4. Схема установки
Электрическая
цепь установки (рис.4) состоит из двух
частей: цепи соленоида (а) и цепи диода
(б), в которых:
- амперметр
для измерения силы тока в соленоиде;
- микроамперметр для измерения силы
анодного тока;
-вольтметр
для измерения анодного напряжения; П1
и П2-регуляторы
тока и напряжения.
5. Порядок выполнения работы
В лаборатории физического практикума кафедры физики УГТУ-УПИ смонтирован магнетрон, изображенный на фотографии на титульном файле данной работы, при этом используется обычная радиолампа (диод), помещенная в относительно длинный соленоид, создающий достаточно однородное магнитное поле, что позволяет применять вышеописанную методику измерения и расчета удельного заряда электрона.
В компьютерном варианте данной работы максимально точно моделируются условия проведения эксперимента, на экране дисплея воспроизводятся миллиамперметр, измеряющий ток соленоида, и микроамперметр, регистрирующий анодный ток в радиолампе, что позволяет практически построить сбросовую характеристику магнетрона.
При этом от экспериментатора требуется аккуратность в проведении опыта и правильность записи результатов измерений, обработки опытных данных, расчета искомой величины и погрешности результата измерений. Измерения можно проводить как при монотонном повышении тока соленоида, так и при его уменьшении. Работать следует только с клавиатурой и мышкой.
Однако прежде чем выполнять экспериментальную часть работы, следует внимательно прочитать теоретическую часть данного руководства и ответить на контрольные вопросы.
Навести курсор на «Измерения», нажать левую клавишу мышки. При этом на дисплее вашего компьютера появится миллиамперметр и микроамперметр, регистрирующие токи соленоида и радиолампы, соответственно.
Ознакомиться с приборами и заполнить таблицу «Средства измерений и их характеристики» отчета (см. ниже прил. 2).
Записать в отчет данные о параметрах магнетрона. Измерения проводятся при анодном напряжении Ua =6,0+_0,1 В.
Навести курсор на регулятор тока соленоида, постепенно повышая значения тока в соленоиде, снять зависимость анодного тока от силы тока Ic в соленоиде. Рекомендуется снять 18 точек. Результаты измерений внести в таблицу 2 отчета. По экспериментальным данным построить на миллиметровой бумаге график
.
По полученным данным определить критическое значение тока в соленоиде IC,кр методом графического дифференцирования зависимости , которое осуществляется следующим образом. По парам ближайших точек тока соленоида (табл. 2) найти
,
и
и занести эти результаты в табл. 3. Построить на миллиметровой бумаге график зависимости
, где <Ic> есть среднее значение тока двух соседних точек, т.е. на оси абсцисс значение тока соленоида брать между двумя соседними точками. Точку на оси абсцисс, соответствующую максимуму графика, принять за I С, кр.
Рассчитать удельный заряд электрона по основной расчетной формуле. Сравнить полученный результат с табличным значением удельного заряда электрона.
Рассчитать границу относительной и абсолютной погрешности результата измерения удельного заряда электрона по формуле, приведенной в отчете. В случае значительного расхождения опытных и табличных значений повторить измерения.
Оформить отчет (см. прил. 2) и сдать его преподавателю на проверку.
Приложение 1
Индукция
поля соленоида без сердечника на его
оси может быть найдена по формуле
(П.1.1)
где
- общее число витков соленоида,
- сила тока в соленоиде,
- его длина,
и
- углы между осью соленоида и радиусами
-векторами, проведенными от его середины
к крайним виткам (см. рисунок).
Из рисунка видно, что
Таким образом, имеем
К
расчету индукции магнитного поля
соленоида
(П.1.2)
Если
(соленоид длинный), то
ПРИЛОЖЕНИЕ 2